Carbon & Climate-Smart Forestry: Forest protection and management options for climate mitigation

Sara Kuebbing Director of Research Yale Applied Science Synthesis Program

Disclaimer: Carbon should probably not be the *primary* reason to manage forests.

Yale SCHOOL OF THE ENVIRONMENT The Forest School

Photos by Katy Wilkens, Mike Arney, Erik Karits, Sebastian Pichler, Karsten Winegart, Alex Reynolds on Unsplash.

Carbon & Climate-Smart Forestry: Forest protection and management options for climate mitigation

Sara Kuebbing Director of Research Yale Applied Science Synthesis Program

Overview

1) Why "carbon forestry" is the new hot topic in climate mitigation

2) Why carbon, forestry, and climate are deeply entwined [or, an Overview of Forest Carbon Cycling]

3) Carbon & Climate-Smart Forestry: some numbers

Why "carbon forestry" is the new hot topic

We have 1.8 billion billion metric tons of Carbon on Earth

Carbon flows between the atmosphere, ecosystems, and the earth's crust..

Humans have increased the total amount of atmospheric carbon by burning fossil fuels

Copyright 2010 GLOBE Carbon Cycle Project, a collaborative project between the University of New Hampshire, Charles University and the GLOBE Program Office.

Data Sources: Adapted from Houghton, R.A. Balancing the Global Carbon Budget. Annu. Rev. Earth Planet. Sci. 007.35:313-347, updated emissions values are from the Global Carbon Project: Carbon Budget 200

1950's: first scientific evidence of irreversible atmospheric change

Carbon Dioxide Exchange Between Atmosphere and Ocean and the Question of an Increase of Atmospheric CO₂ during the Past Decades

By ROGER REVELLE and HANS E. SUESS, Scripps Institution of Oceanography, University of California, La Jolla, California

(Manuscript received September 4, 1956)

Abstract

From a comparison of C14/C12 and C13/C12 ratios in wood and in marine material and from a slight decrease of the C14 concentration in terrestrial plants over the past 50 years it can be concluded that the average lifetime of a CO, molecule in the atmosphere before it is dissolved into the sea is of the order of 10 years. This means that most of the CO, released by artificial fuel combustion since the beginning of the industrial revolution must have been absorbed by the oceans. The increase of atmospheric CO₂ from this cause is at present small but may become significant during future decades if industrial fuel combustion continues to rise exponentially

Present data on the total amount of CO_8 in the atmosphere, on the rates and mechanisms of exchange, and on possible fluctuations in terrestrial and marine organic carbon, are inadequate for accurate measurement of future changes in atmospheric CO₂. An opportunity exists during the International Geophysical Year to obtain much of the necessary information

Introduction

In the middle of the 19th century appreciable amounts of carbon dioxide began to be added to the atmosphere through the combustion of fossil fuels. The rate of combustion has con- He thus revived the hypothesis of T. C. tinually increased so that at the present time CHAMBERLIN (1899) and S. ARRHENIUS (1903) the annual increment from this source is nearly that climatic changes may be related to fluctua-0.4 % of the total atmospheric carbon dioxide.

phere, and he suggested that the increase in atmospheric carbon dioxide may account for the observed slight rise of average temperature in northern latitudes during recent decades. tions in the arbon dioxide content of the air.

1980's: Vocal, global concern about fossil fuel emissions

World Conference on the Changing Atmosphere:

@Coleur, Pixabay

@CharlVera, Pixabay

Yale Applied Science Synthesis Program https://synthesis.yale.edu

August 9, 2021

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Climate Change 2021 The Physical Science Basis Summary for Policymakers

Working Group I contribution to the Sixth Assessment Report of the ergovernmental Panel on Climate Chang

Limiting warming to 1.5°C and 2°C involves rapid, deep and in most cases immediate greenhouse gas emission reductions

Net zero CO₂ and net zero GHG emissions can be achieved through strong reductions across all sectors

Yale SCHOOL OF THE ENVIRONMENT The Forest School

August 9, 2021

INTERGOVERNMENTAL PANEL ON Climate change

Climate Change 2021 The Physical Science Basis Summary for Policymakers

Working Group I contribution to the Sixth Assessment Report of the ntergovernmental Panel on Climate Cha

"All pathways that limit global warming to 1.5°C with limited or no overshoot project the use of carbon dioxide removal (CDR) on the order of 100–1000 GtCO2 over the 21st century. CDR would be used to compensate for residual emissions and, in most cases, achieve net negative emissions to return global warming to 1.5°C following a peak (high confidence)."

Where can we put all this atmospheric CO₂?

[= climate mitigation]

Copyright 2010 GLOBE Carbon Cycle Project, a collaborative project between the University of New Hampshire, Charles University and the GLOBE Program Office. Data Sources: Adapted from Houghton, R.A. Balancing the Global Carbon Budget. Annu. Rev. Earth Planet. Sci. 007.35:313-347, updated emissions values are from the Global Carbon Project: Carbon Budget 2005

Copyright 2010 GLOBE Carbon Cycle Project, a collaborative project between the University of New Hampshire, Charles University and the GLOBE Program Office. Data Sources: Adapted from Houghton, R.A. Balancing the Global Carbon Budget. Annu. Rev. Earth Planet. Sci. 007.35:313-347, updated emissions values are from the Global Carbon Project: Carbon Budget 20

Copyright 2010 GLOBE Carbon Cycle Project, a collaborative project between the University of New Hampshire, Charles University and the GLOBE Program Office. Data Sources: Adapted from Houghton, R.A. Balancing the Global Carbon Budget. Annu. Rev. Earth Planet. Sci. 007.35:313-347, updated emissions values are from the Global Carbon Project: Carbon Bu

Where can we put all this atmospheric CO₂?

Direct Air Capture (DAC) technology

DAC uses electricity and heat to filter carbon dioxide (CO_2) from the ambient air for utilization or for permanent storage deep underground. DAC and storage (DACS) results in the net removal of CO_2 from the atmosphere.

Where can we put all this atmospheric CO₂?

Photo by Josh Berendes on Unsplash

Copyright 2010 GLOBE Carbon Cycle Project, a collaborative project between the University of New Hampshire, Charles University and the GLOBE Program Office. Data Sources: Adapted from Houghton, R.A. Balancing the Global Carbon Budget. Annu. Rev. Earth Planet. Sci. 007.35:313-347, updated emissions values are from the Global Carbon Project: Carbon Budget 2005

Where can we put all this atmospheric CO₂?

BrineStans @ Wikimedia Commons

Copyright 2010 GLOBE Carbon Cycle Project, a collaborative project between the University of New Hampshire, Charles University and the GLOBE Program Office. Data Sources: Adapted from Houghton, R.A. Balancing the Global Carbon Budget. Annu. Rev. Earth Planet. Sci. 007.35:313-347, updated emissions values are from the Global Carbon Project: Carbon Budget.

National and international discussions are considering 'forest carbon management' as a pillar of climate mitigation

INTERGOVERNMENTAL PANEL ON CLIMATE CHARGE

CLIMATE CHANGE 2023 Synthesis Report

Summary for Policymakers

A Report of the Intergovernmental Panel on Climate Change

"Rapid and far-reaching transitions across all sectors and systems are necessary to achieve deep and sustained emissions reductions and secure a liveable and sustainable future for all. **These system transitions involve a significant upscaling of a wide portfolio of mitigation and adaptation options.** Feasible, effective, and low-cost options for mitigation and adaptation are already available, with differences across systems and regions. (*high confidence*)"

Gosh – I wish we didn't have to have these conversations...

Everything and the Carbon Sink

Noah Deich's blog on all things Carbon Dioxide Removal (CDR)

"If we (very) aggressively cut greenhouse gas emissions over the next decades, we can obviate the need for large-scale carbon dioxide removla altogether."

Relative to other carbon dioxide removal strategies, forest carbon removal is cheap, but limited

(TONNES CO₂ PER YEAR)

Diech 2014, https://carbonremoval.wordpress.com/

ЧО

COST

Relative to other carbon dioxide removal strategies, forest carbon removal is cheap, but limited

(TONNES CO₂ PER YEAR)

Diech 2014, https://carbonremoval.wordpress.com/

ЧО

COST

There are strong and divergent opinions about the role of forests for climate mitigation

The Washington Post

Mother Nature Has the Best Climate-Fixing Technology

Analysis by Amanda Little | Bloomberg February 20, 2023 at 4:03 p.m. EST

ENERGY

CALIFORNIA HOT SPRINGS, CA - SEPTEMBER 21: The tree where President Bill Clinton invoked the Antiquities Act of 1906 and created the Giant Sequoia National Monument is seen as the Windy Fire blazes through the Long Meadow Grove of giant sequoia trees near The Trail of 100 Giants overnight in Sequoia National Forest on September 21, 2021 near California Hot Springs, California. This Sequoia is about 2,00 years old and is 245 feet tail, 62 feet around and 18 feet in diameter. Barm scar on this tree are hundreds of years old. As climate

SUBSCRIBER-ONLY NEWSLETTER

The New Hork Times

David Wallace-Wells

OPINION

Forests Are No Longer Our Climate Friends

Illustration by Sam Whitney/The New York Times; photographs by Chris Hellier and georgeclerk/Getty Image

Disclaimer: Carbon should probably not be the *primary* reason to manage forests.

The New Hork Times

SUBSCRIBER-ONLY NEWSLETTER David Wallace-Wells

OPINION

Forests Are No Longer Our Climate Friends

Sept. 6, 2023

When carbon is viewed as the primary reason to think about forests . . .

it's easy to conclude that there is no hope and that we should not expend resources on forest management.

Why carbon, forests, and climate are deeply entwined.

[or, an overview of forest carbon cycling]

Forests are highly-evolved, sophisticated 'direct air capture' facilities

Forests are highly-evolved, sophisticated 'direct air capture' facilities

Forest vegetation removes carbon dioxide from the atmosphere using 100% renewable solar energy

https://bartonhillfarms.com/photosynthesis-for-kids/

Forests transfer carbon from plant tissues into soils

Here in the United States, we estimate that forests currently store 58.32 billion tonnes of carbon

US EPA. 2021. US Greenhouse Gas Reporting Program

Forest ecosystems are <u>dynamic</u> carbon storage facilities

Copyright 2010 GLOBE Carbon Cycle Project, a collaborative project between the University of New Hampshire, Charles University and the GLOBE Program Office. Data Sources: Adapted from Houghton, R.A. Balancing the Global Carbon Budget, Annu. Rev. Earth Planet. Sci. 007.35:313-347, updated emissions values are from the Global Carbon Project: Carbon Budget /

Regardless of whether forests are part of the "carbon dioxide removal" portfolio forest carbon is a huge part of the carbon budget!

Copyright 2010 GLOBE Carbon Cycle Project, a collaborative project between the University of New Hampshire, Charles University and the GLOBE Program Office. Data Sources: Adapted from Houghton, R.A. Balancing the Global Carbon Budget. Annu. Rev. Earth Planet. Sci. 007.35:313-347, updated emissions values are from the Global Carbon Project: Carbon Budget 200

Historically, forests are a net carbon sink each year

[CO₂ removal > CO₂ emissions]

Copyright 2010 GLOBE Carbon Cycle Project, a collaborative project between the University of New Hampshire, Charles University and the GLOBE Program Office. Data Sources: Adapted from Houghton, R.A. Balancing the Global Carbon Budget. Annu. Rev. Earth Planet. Sci. 007.35:313-347, updated emissions values are from the Global Carbon Project: Carbon Budget 2009.

Historically, forests are a net carbon sink each year [CO₂ removal > CO₂ emissions]

Source: U.S. EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

US EPA. 2021. US Greenhouse Gas Reporting Program

In 2021, US forest captured ~ 593 MMT CO₂e

Source: U.S. EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

Global Carbon Cycle

Forests emit carbon dioxide when they are disturbed or converted to other land uses

Forests emit carbon dioxide when they are converted to other land uses

1990

1994

1998

Percent change: 1990-2021 Forest converted to cropland: Emissions **A** 0.8% Grassland converted to cropland: Emissions A 21.4% Wetlands converted to cropland: Emissions ▼ 20.9% Settlements converted to cropland: Sink ▲ 53.5% Other lands converted to cropland: Sink A 7.0% Net total: Emissions
 3.1%

Forest converted to cropland Wetlands converted to cropland Other lands converted to cropland Settlements converted to cropland

2002

Source: U.S. EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

2006

Year

2010

2014

2018 2021

Avoided forest conversion

Historical annual carbon emissions from forest conversion range from 22-125 MMT CO₂ per year

Source	Area (Mha per year)	Forest Emissions (MMT CO ₂ per vear)	Key Regions of Opportunity
Harris et al. 2016	0.1	22 ± 3.67	Pacific Northwest, eastern urban population centers
US EPA 2021		125.3 in 2021	

Forests emit carbon dioxide when they are disturbed

@CharlVera, Pixabay

@Matt Pardue, Wikimedia Commons

@K Dodd, Wikimedia Commons

Wildfire in the US is leading cause of current forest fire emissions, with ~ 120 MMT of forest CO_2e per year (2016-2020)

Source: U.S. EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks Yale school of the environment

The Forest School

Wildfire in the US is leading cause of current with ~ 120 MMT of forest CO₂e per yea

Yale Applied Science Synthesis Program https://synthesis.yale.edu

st fire emissions, 016-2020)

Harris et al. 2016, *Carbon Balance and Management,* DOI 10.1186/s13021-016-0066-5

https://www.epa.gov/ghgreporting

Yale SCHOOL OF THE ENVIRONMENT The Forest School

Tree mortality from hurricanes emit an average of 18 -66 MMT of forest CO₂ per year

Harris et al. 2016, *Carbon Balance and Management,* DOI 10.1186/s13021-016-0066-5

Table 1 | Ten most destructive hurricane events with dates and categories at landfalling. Numbers in parentheses show minimum and maximum range

Name	Landfalling Date	Category at Landfalling*	Biomass mortality (TgC)
Camille	8/15/1969	5	59.49 (41.42 ~ 77.58)
Donna	9/10/1960	4	51.48 (35.80 ~ 67.16)
Hazel	10/15/1954	4	47.39 (32.27 ~ 62.51)
Okeechobee	9/17/1928	4	41.22 (28.78 ~ 53.69)
Elena	9/1/1985	3	38.42 (26.98 ~ 49.86)
Katrina	8/29/2005	3	36.03 (27.75 ~ 46.29)
Gracie	9/29/1959	3	$33.85(23.47 \sim 44.21)$
Diana	9/13/1984	3	33.43 (23.18 ~ 43.68)
Hugo	9/22/1989	4	30.47 (20.91 ~ 40.05)
Frederic	9/13/1979	3	30.4 (21.22 ~ 39.58)
*based on Saffir-Simpson scale.			

Tree mortality from hurricanes on the rise?

Atlantic Oceanographic & Meteorological Laboratory National Oceanic & Atmospheric Administration

	Continental United States Hurricane Impacts/Landfalls 1851-2022					
(Revised in April 2023 to add in the 2022 season)						
Year	Month	States Affected and Category by States	Highest Saffir- Simpson U.S. Category	Central Pressure (mb)	Max Wind (kt)	Name
		2010s				
2010		Non	е			
2011	Aug	NC, 1	1	952	75	Irene
2012	Aug		1	966	70	Isaac
2012	Oct	* NY, 1	1	942	65	Sandy
2013		Non				
2014	Jul	NC, 2	2	973	85	Arthur
2015		Non	е			
2016		FL, NW1	1	981		Hermine
2016		* FL, NE2; GA, 1; SC, 1; NC, 1	2	963		Matthew
2017		TX,C4	4	937		Harvey
2017		FL, SW4,SE 1	4	931	115	Irma
2017		LA 1, MS 1	1	983	65	Nate
	Sep		1	956	80	Florence
2018		FL, NW5; I-GA, 2	5	919	140	Michael
2019	Jul		1	993	65	Barry
2019	Sep	,	2	956	85	Dorian
		2020s				
2020		TX, S1	1	973		Hanna
2020		NC, 1; SC, 1	1	986	80	Isaias
2020		LA, 4; TX, N1	4	939	130	Laura
2020		AL, 2; FL, NW2	2	965	95	Sally
2020	Oct	,	2	970	85	Delta
2020		LA,3; MS, 2; I-AL, 1	3	970	100	Zeta
2021		LA,4	4	931	130	Ida
2021		TX,N1	1	991	65	Nicholas
2022	Sep	FL, SW4; I-FL, SE1;FL, NE1; SC, 1	4	941	130	Ian

Tree mortality from forest pests and pathogens emit an average of 12.8 to 20.3 MMT of forest CO₂ per year

Harris et al. 2016, *Carbon Balance and Management,* DOI 10.1186/s13021-016-0066-5

Fei et al. 2019, Proceedings of the National Academy of Science, DOI 10.1073/pnas.1820601116

Forests emit carbon dioxide when they are disturbed.

@CharlVera, Pixabay

@Matt Pardue, Wikimedia Commons

@K Dodd, Wikimedia Commons

Unplanned disturbances

Forests emit carbon dioxide when they are disturbed

Harris et al. 2016, *Carbon Balance and Management,* DOI 10.1186/s13021-016-0066-5

But timber harvesting is estimated to be a net carbon sink because estimated annual carbon storage in wood products (446 MMT CO_2e) is greater than harvesting emissions (341 MMT CO₂e).

Source: U.S. EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

Carbon & Climate-Smart Forestry

Carbon & Climate-Smart Forestry

MDPI

Article

By 2050 the Mitigation Effects of EU Forests Could Nearly Double through Climate Smart Forestry

Gert-Jan Nabuurs ^{1,*} ⁽²⁾, Philippe Delacote ², David Ellison ³ ⁽²⁾, Marc Hanewinkel ⁴, Lauri Hetemäki ⁵, Marcus Lindner ⁵ ⁽³⁾

"... the concept of "Climate Smart Forestry" (CSF) which we see as a more specific (climate-oriented) form of the <u>Sustainable Forest</u> <u>Management paradigm</u>. The idea behind CSF is that it considers the whole value chain from forest to wood products and energy, and illustrates that a wide range of measures can be applied to provide positive incentives for more firmly integrating climate objectives into the forest and forest sector framework. CSF is more than just storing carbon in forest ecosystems; it builds upon three main objectives;

(i) reducing and/or removing greenhouse gas emissions;

(ii) adapting and building forest resilience to climate change; and

(iii) sustainably increasing forest productivity and incomes. "

Forestry for reducing or removing greenhouse gas emission

Forests are highly-evolved, sophisticated 'direct air capture' facilities

Forestry for reducing or removing greenhouse gas emission

1. Increase the total amount of forestland

2. Increase forest carbon dioxide removal efficiency

3. Increase durability of forest carbon storage

Increase the total area of forest

Increase the total area of forest

Yale SCHOOL OF THE ENVIRONMENT The Forest School

Reforestation & Afforestation

Planting trees is highly likely to increase total forestland carbon storage for the United States

Study	Reforestation & Afforestation Considerations	Area (Mha)	Mitigation Potential (MMT CO ₂ per year)	Cost	Key Regions of Opportunity
Cook-Patton et al. 2020	Restoring tree cover in former forestland	51.6	314.2	~ 50% at < \$20 tCO2 -1	Southeast
Fargione et al. 2018	Reforesting former forestland that is not currently wetland, active cropland, or livestock pastureland.	62.9	306.6	~ 80% < \$50 USD Mg CO2e- 1	Northeast and south central
Haight et al. 2020	Incentivizing private landowners in the eastern US to plant trees and planting trees in federal forests in the west.	15.1	107	6.5 Billion	South
Wear and Coulston 2015	Incentivizing private landowners in the eastern US to retire croplands and plant trees and planting trees in federal forests in the west.	7.73	27.6		South and Pacific Northwest
Zhang et al. 2023	Planting pine trees in the southeastern United States for pineland restoration	2.1	71.14	\$1.22 per tonne	Southeast

Avoided forest conversion

Future projections estimate that avoiding forest conversion could protect ~39 MMT CO₂e

Source	Forest C Protection (MMT CO ₂ per year)	Key Regions of Opportunity
Fargione et al. 2018	38	Southern, Pacific Northwest
Haight et al. 2020	39	Rocky Mountains

Haight et al. 2020, *Agricultural and Resource Economics Review,* DOI 10.1017/age.2019.20

Forestry for reducing or removing greenhouse gas emission

- 1. Increase the total amount of forest
- 2. Increase forest carbon dioxide removal efficiency

In 2021, US forest captured ~ 593 MMT CO₂e

Source: U.S. EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

US EPA. 2021. US Greenhouse Gas Reporting Program

Increase forest carbon dioxide removal efficiency

Increasing # trees (stocking density) within existing forestlands

Increasing the number of fans and filters at an existing DAC facilities

"Improved Forest Management" to promote tree health

Maintenance of broken fans and filters Increasing # trees (stocking density) within existing forestlands

Understocked US timberlands sequester 20% less carbon dioxide and store 30% less carbon in trees than fully stocked forests

Yale SCHOOL OF THE ENVIRONMENT The Forest School

Increasing # trees (stocking density) within existing forestlands

Fully stocking understocked timberland could increase forest CO_2 removals by 20% (187.7 ± 9.1 MMT CO_2) per year

"Improved Forest Management"		What is II	F M?
Received: 1 April 2021 Accepted: 20 June 2021 DOI: 10.1002/2688-8319.12090 NATURE-BASED SOLUTIONS FOR A CHANGING WORLD Review	cological Solutions and Evidence		
Improved forest management as a natural climat review Lilli Kaarakka ^{1,2} I Meredith Cornett ³ Grant Domke ⁴ Todd <u>O</u>			
Laura E. Dee ² ©	TABLE 4 Definition	of improved forest management proposed by	this synthesis
		Proposed definition	Silvicultural management practices
	Improved forest management (IFM)	IFM encompasses a range of silvicultural management actions that incorporate above- and below-ground biomass C components, as well soil C stocks.	Extended rotations Thinning for stand improvement and fuel management Promoting uneven-aged forest management (including partial harvesting) Facilitating stand re-establishment/regeneration and seedling survival Avoiding logging damage to remaining trees Species selection: retaining native species, and if possible, diversifying species in stand Minimizing soil disturbance and extensive soil damage: compaction, mixing and displacement Retain coarse woody debris (stumps, downed trees, snags) in a stand

Kaarakka et al. 2021, Ecological Solutions and Evidence, DOI 10.1002/2688-8319.12090

"Improved Forest Management"		What is I	F M ?
Received: 1 April 2021 Accepted: 20 June 2021 DOI: 10.1002/2688-8319.12090 NATURE-BASED SOLUTIONS FOR A CHANGING WORLD Review	and Evidence		
Improved forest management as a natural clip review			
	odd <u>Ontl⁵</u>		
Laura E. Dee ² 💿	TABLE 4 Definition	of improved forest management proposed by	this synthesis
Laura E. Dee ² [®]	TABLE 4 Definition	of improved forest management proposed by Proposed definition	this synthesis Silvicultural management practices
Laura E. Dee ² [®]	Improved forest	Proposed definition IFM encompasses a range of silvicultural	•
Laura E. Dee ² 💿		Proposed definition IFM encompasses a range of silvicultural management actions that incorporate	Silvicultural management practices
Laura E. Dee ² o	Improved forest	Proposed definition IFM encompasses a range of silvicultural	Silvicultural management practices Extended rotations
Laura E. Dee ² o	Improved forest	Proposed definition IFM encompasses a range of silvicultural management actions that incorporate above- and below-ground biomass C	Silvicultural management practices Extended rotations Thinning for stand improvement and fuel management
Laura E. Dee ² (0)	Improved forest	Proposed definition IFM encompasses a range of silvicultural management actions that incorporate above- and below-ground biomass C	Silvicultural management practices Extended rotations Thinning for stand improvement and fuel management Promoting uneven-aged forest management (including partial harvesting)
Laura E. Dee ² (0)	Improved forest	Proposed definition IFM encompasses a range of silvicultural management actions that incorporate above- and below-ground biomass C	Silvicultural management practices Extended rotations Thinning for stand improvement and fuel management Promoting uneven-aged forest management (including partial harvesting) Facilitating stand re-establishment/regeneration and seedling survival
Laura E. Dee ² (0)	Improved forest	Proposed definition IFM encompasses a range of silvicultural management actions that incorporate above- and below-ground biomass C	Silvicultural management practices Extended rotations Thinning for stand improvement and fuel management Promoting uneven-aged forest management (including partial harvesting) Facilitating stand re-establishment/regeneration and seedling survival Avoiding logging damage to remaining trees Species selection: retaining native species, and if possible, diversifying

Kaarakka et al. 2021, Ecological Solutions and Evidence, DOI 10.1002/2688-8319.12090

Yale SCHOOL OF THE ENVIRONMENT The Forest School

"Improved Forest Management"

Extended rotations of private, commercial forestland estimated to avoid 267 MMT forest CO₂ emissions per year

Zuckerman 2021, Northwest Natural Resource Group

"Improved Forest Management"

Limited empirical or modeling work on the direct effects of IFM on forest carbon stocks and sequestration at regional or national scales

Received: 1 April 2021 Accepted: 20 June 2021		
DOI: 10.1002/2688-8319.12090	RITISH	
NATURE-BASED SOLUTIONS FOR A CHANGING WORLD		
Review		
Improved forest management as a natural climate solureview		Definiti

TABLE 4 Definition of improved forest management proposed by this synthesis

	Proposed definition	Silvicultural management practices
Improved forest IFM encompasses a range of silvicultural	Extended rotations	
management (IFM)		Thinning for stand improvement and fuel management
	above- and below-ground biomass C components, as well soil C stocks.	Promoting uneven-aged forest management (including partial harvesting)
		Facilitating stand re-establishment/regeneration and seedling survival
		Avoiding logging damage to remaining trees
		Species selection: retaining native species, and if possible, diversifying species in stand
		Minimizing soil disturbance and extensive soil damage: compaction, mixing and displacement
		Retain coarse woody debris (stumps, downed trees, snags) in a stand

Kaarakka et al. 2021, *Ecological Solutions and Evidence*, DOI 10.1002/2688-8319.12090

"Improved Forest Management"

Ecological theory and local studies support IFM as a tool

International Conservation News

Reduced-Impact Logging as a Carbon-Offset Method

Conservation Biology Volume 7, No. 4, December 1993

Avoiding logging damage (aka "reduced impact logging")

Logging Damage to White Oak Trees

For Media

"Improved Forest Management"

Ecological theory and local studies support IFM as a tool

UNIVERSITY of WISCONSIN-MADISON

Avoiding soil disturbance

Muddy forests, shorter winters present challenges for loggers

Campus News

UW in the News

December 22, 2014 | By David Tenenbaum

Explore Topics V

A new study finds that the period of frozen ground has declined by an average of two or three weeks since 1948. Logging trucks have a harder time accessing forests with wet, unfrozen soil – and can leave their marks along the way. Photo: Wisconsin DNR

https://news.wisc.edu/muddy-forests-shorter-winters-present-challenges-for-loggers/

Forestry for reducing or removing greenhouse gas emission

- 1. Increase the total amount of forest
- 2. Increase forest carbon dioxide removal efficiency
- 3. Increase durability of forest carbon storage

Forests emit carbon dioxide when they are disturbed.

Unplanned disturbances

Planned disturbances

Forests emit carbon dioxide when they are disturbed.

Unplanned disturbances = Less direct control

Impossible to predict over space and time;impact of disturbance on forest varies locally;

Planned disturbances = More control

Yale SCHOOL OF THE ENVIRONMENT The Forest School

Unplanned disturbances are projected to increase with increasing atmospheric CO₂

Anderegg et al. 2022, *Ecology Letters*, DOI 10.1111/ele.14018

Forests are part of our carbon accounting budget –whether we choose to manage or not

Source: U.S. EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021.

https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

US EPA. 2021. US Greenhouse Gas Reporting Program

https://www.epa.gov/ghgreporting

<u>ALL</u> climate mitigation facilities can be disturbed by hurricanes and wildfires

Analysis Weather tracker: Hurricane Idalia leaves trail of damage in Florida

Matt Williams for MetDesk

Category 3 storm causes extensive flooding in south-east US, while heavy rain and winds also hit France and Italy

FEMA's recommendations for solar system hurricane preparedness focused on structural engineering, installation competence, plus simply tightening the bolts regularly, along with microinverters to mitigate individual panel damage.

NOVEMBER 29, 2018 JOHN FITZGERALD WEAVER

DISASTER RECOVERY OPTIMIZERS & INVERTERS RACKING RESIDENTIAL PV UNITED STATES

Kilo Fire. Photo credit, Los Angeles County Fire Department.

ALL carbon storage facilities can be 'leaky'

Li and Liu 2016, *Geological Carbon Sequestration*, DOI 10.1007/978-3-319-27019-7_13

Increase durability of forest carbon

Increase forest resilience to unplanned disturbances Increase infrastructure resilience to unplanned disturbances.

harvested wood products ?

Increase forest resilience to unplanned disturbances

'Improved forest management' practices likely to increase forest resilience, but empirical data is local and limited

Received: 1 April 2021	Accepted: 20 June 2021	
DOI: 10.1002/2688-83		
NATURE-BAS	ED SOLUTIONS FOR A CHANGING WORLD	gical Solutions
Review		
Improve	l forest management as a natural climate s	olution: A
•	l forest management as a natural climate s	olution: A
Improved review	l forest management as a natural climate s	olution: A

Lilli Kaarakka^{1,2} I Meredith Cornett³ Grant Domke⁴ Todd Ont¹ Laura E. Dee² **TABLE 4** Definition of improved forest management proposed by this synthesis

	Proposed definition	Silvicultural management practices
Improved forest management (IFM)	IFM encompasses a range of silvicultural management actions that incorporate above- and below-ground biomass C components, as well soil C stocks.	Extended rotations
		Thinning for stand improvement and fuel management
		Promoting uneven-aged forest management (including partial harvesting)
		Facilitating stand re-establishment/regeneration and seedling survival
		Avoiding logging damage to remaining trees
		Species selection: retaining native species, and if possible, diversifying species in stand
		Minimizing soil disturbance and extensive soil damage: compaction, mixing and displacement
		Retain coarse woody debris (stumps, downed trees, snags) in a stand

Kaarakka et al. 2021, Ecological Solutions and Evidence, DOI 10.1002/2688-8319.12090

Increase forest resilience to unplanned disturbances

... But data is coming ...

RESEARCH ARTICLE

J. For. 115(3):167-178 https://doi.org/10.5849/jof.16-039 Copyright © 2017 Society of American Foresters

silviculture

Adaptive Silviculture for Climate Change: A National Experiment in Manager-Scientist Partnerships to Apply an Adaptation Framework

Linda M. Nagel, Brian J. Palik, Michael A. Battaglia, Anthony W. D'Amato, James M. Guldin, Christopher W. Swanston, Maria K. Janowiak, Matthew P. Powers, Linda A. Joyce, Constance I. Millar, David L. Peterson, Lisa M. Ganio, Chad Kirschbaum, and Molly R. Roske

Yale Applied Science Synthesis Program https://synthesis.yale.edu

Increase forest resilience to unplanned disturbances

Managing for forest resilience to wildfire and pests and pathogens

Increase forest resilience to unplanned disturbances

Thinning overstocked forests can reduce wildfire impact

WILDFIRE RESILIENCE INSURANCE:

Quantifying the Risk Reduction of Ecological Forestry with Insurance

Summary of Insights

WillisTowers Watson III'I'III

The Nature Conservance

UNMANAGED FOREST Fire in an unmanaged ponderosa pine forest (where fires have been repeatedly suppressed): Overcrowding can make the forest less healthy and resilient. When such a forest burns, the fire can extend into the crowns, killing large swaths of trees. © Erica Sloniker / TNC

MANAGED FOREST Fire in a managed ponderosa pine forest (using controlled burns with or without mechanical thinning): A fire burns low through the understory, maintaining gaps between some trees that help prevent future large crown fires. © Erica Sloniker / TNC

Yale school of the environment

Increase forest resilience to unplanned disturbances

The Forest School

But because we do not know when or where fire will occur, fire resilience treatments may opt to prioritize human and ecological communities...not carbon

Increase forest resilience to unplanned disturbances

Protecting forests from introduced pests and pathogens: the old

Increase forest resilience to unplanned disturbances

Protecting forests from introduced pests and pathogens: the NEW

а 150 Phloem and wood borers Foliage feeders Sap feeders Cumulative pest detections Other 100 50 -----0 1750 1900 1950 2000 1800 1850 Year

Increase forest resilience to unplanned disturbances

We need more robust policies to prevent accidental introduction of forest pests

BIOLOGICAL REVIEWS

Cambridge Philosophical Society

1511

Biol. Rev. (2020), **95**, pp. 1511–1534. doi: 10.1111/brv.12627

Scientists' warning on invasive alien species

Petr Pyšek^{1,2,3*}, Philip E. Hulme⁴, Dan Simberloff⁵, Sven Bacher⁶, Tim M. Blackburn^{7,8,3}, James T. Carlton⁹, Wayne Dawson¹⁰, Franz Essl^{11,3}, Llewellyn C. Foxcroft^{3,12}, Piero Genovesi^{13,3}, Jonathan M. Jeschke^{14,15,16}, Ingolf Kühn^{17,18,19}, Andrew M. Liebhold^{20,21}, Nicholas E. Mandrak²², Laura A. Meyerson²³, Aníbal Pauchard^{24,25}, Jan Pergl¹, Helen E. Roy²⁶, Hanno Seebens²⁷, Mark van Kleunen^{28,29}, Montserrat Vilà^{30,31}, Michael J. Wingfield³², and David M. Richardson³

Increase climate benefits of harvested wood products

Wood products may have additional climate benefits through energy & product substitution

Planned disturbances

Increase climate benefits of harvested wood products

Wood products may have additional climate benefits through energy & product substitution

Planned disturbances

Cross-laminated timber could 'forge new links between lands and people'

Increase climate benefits of harvested wood products

Innovative, commercial pine planting could mitigate ~ 3-4 billion metric tonnes CO₂e over 100 years

RESEARCH ARTICLE ENVIRONMENTAL SCIENCES

Climate-smart forestry through innovative wood products and commercial afforestation and reforestation on marginal land

Bingquan Zhang^{a,1} (b), Kai Lan^{a,1}, Thomas B. Harris^b (b), Mark S. Ashton^b, and Yuan Yao^{a,b,2} (b)

Edited by Yiqi Luo, Cornell University; received December 24, 2022; accepted April 25, 2023 by Editorial Board Member Mary K. Firestone

2.0

Carbon stock (Mt)

1.0

4.0

3.0

5.0

8.0

12.0

0.2

0.1

0.5

Conclusions

1) Land managers and policy makers are actively discussing "Carbon forestry" for climate mitigation

2) **Carbon**, **forestry**, and **climate** are deeply entwined and whether we chose to act or not – forest carbon is part of the globe's carbon budget.

3) There are a a host of **Climate**-Smart **Forestry** practices that hold promise for climate adaptation and mitigation

Disclaimer: Carbon should probably not be the *primary* reason to manage forests.

Photos by Katy Wilkens, Mike Arney, Erik Karits, Sebastian Pichler, Karsten Winegart, Alex Reynolds on Unsplash.

Sara Kuebbing Director of Research Yale Applied Science Synthesis Program

sara.kuebbing@yale.edu

