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Summary

America’s productive private forests are at risk, under threat of being converted to malls, housing developments, and
personal green space. Conservationists and officials in many localities are asking what they can do to help
conserve their forests and maintain local forest-based economies. This study is designed to test the ability of a
dynamic simulation modeling tool—GEOMOD—to illustrate local and regional land use changes, both in the
recent past and in the near future. It stems from the idea that if people know how rapidly their forest
resource is being lost, where it is being lost, and what forces seem to be driving the losses, they will be better
equipped to take effective conservation action.

With this project, we have successfully demonstrated the utility of using GEOMOD as a land use planning tool
in areas under pressure from unplanned development and sprawl. Working with two sites, the Thames River
Watershed in Connecticut and Massachusetts and the Catskill/Delaware water supply watersheds and surrounding
region in New York, we have demonstrated a scientifically rigorous method of projecting likely future scenarios
of development based on analysis of past rate and patterns of land use change. 

In the Catskill/Delaware region we found that private forests are being converted to non-forest uses at a rate
of a little over 1% per year, in a fragmented pattern. Without strong conservation intervention, that rate is likely
to proceed for the next decade, resulting in the loss of another 162,000 acres of private forestland, and a much
more fragmented forest resource, by the year 2011. Through statistical analysis, we found that in this mountainous
region, the fragmentation that has occurred since 1992 follows a pattern of sprawling up the valleys and is most
influenced by the proximity of urban areas, roads, and topography, particularly elevation and slope.  Using a simple
measure of “area of intact forest” vs. “perimeter of forest patches,” the area:perimeter ratio was 187:1 in
1992; 150:1 in 2001 and is projected to be 105:1 in 2011.  Forest patches are getting smaller, with more
edge environment, which impacts everything from wildlife habitat, deer and tick populations, water quality, the
potential for timber harvesting, recreation, aesthetics, and local economies.

Within the New York City Watersheds, forestland parcel size is decreasing and our analysis indicates that forest
land that has been parcelized is 1.5 times more likely to be converted to other uses than land that has not
been divided. The average parcel size in the region has gone from 18 acres in 1985 to 14 acres in 2000,
clearly indicating increased parcelization of forestland since 1985. As evidence that parcelization (smaller
ownerships) does lead to further forest fragmentation, our data from a sample of 122,000 acres, show that
lands that had been parcelized between 1984 and 2000 experienced a higher rate of forest loss (8%) than
those that had not been parcelized (5.5%).  

In the Thames Watershed region, of the 740,000 acres of forest not permanently protected from development,
7.4% has been lost since 1985. This may seem like a fairly low rate over 17 years, but it is the pattern that
is most troubling.  If the same trend continues, we project that the Thames Watershed and surrounding towns
will lose an additional 64,000 acres of forest, scattered across the landscape, in the next 17 years.  The
forests are more fragmented as shown by the area:perimeter ratio which was 421:1 in 1985, dropping to
381:1 in 2002. However, our projections out to 2022 indicate that the future trend may result in an infilling of
developed areas hence elimination of smaller forest fragments and a mathematically higher area:perimeter
ratio, although the remaining patches would not be larger than they were in 2002. 

It is quite likely that our results in both regions actually overstate the amount of intact forest remaining. The land
cover classification process, which uses 30-meter resolution satellite imagery, is much better at picking up
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concentrated development than low density rural development. For example, a housing subdivision with large
lots and trees would show up as partial forest in the satellite imagery. However, this is no longer the same
forested habitat for wildlife as a large tract of unfragmented forest, nor is it a forest that can be managed for timber
or other forest products.  

Nonetheless, our results demonstrate that the rate and location of recent conversions of forest to non-forest
cover, detected by modern interpretation of satellite imagery, can be used not only to study the past but to visualize
possible future conditions. GEOMOD is able to take those past changes, compare them with a wide range of
geophysical and socio-economic data, and derive a statistically robust correlation between past patterns of
land use and land cover change and the most likely future continuation of those patterns.

The result is a visually powerful dynamic display of local land use change, coupled with a new understanding of
the factors associated with that change. Using these tools, local leaders can bring new insight and energy to forest
conservation and land use management programs. The local stakeholders in both areas have expressed tremendous
interest in the results, which they believe would be particularly useful in local- and county- or regional-level
planning efforts.  

Introduction

There are some 10 million private forest ownerships in the United States, and that number has been estimated
to be growing at the rate of around 150,000 a year.

1
At the same time, the area in privately-owned forest land

has stayed roughly the same for decades. The obvious result is that America’s forests are being divided into
smaller and smaller ownerships. Nationwide, over 25 million acres of rural land were developed between 1982
and 1997, and over 10 million of those acres were forest before they were developed.

2
The clear implication is

that forests are increasingly under threat from urban sprawl and other dispersed development. 

These trends raise concerns in two general categories. The first is forest fragmentation—the breaking up of
large contiguous forest areas into smaller, disconnected parcels separated by non-forest lands, roads, or
other land use. The impacts of this fragmentation are often described in ecological terms. A landscape
sprinkled with little patches of disconnected forest does not function in the same way as that landscape
functioned when it was a single large forest. The impact on wildlife habitat can be severe, as many species
cannot thrive or even survive in fragmented landscapes. Other impacts may be felt, for example, on water
quality, as non-forest land uses often are associated with higher rates of water runoff, soil erosion, and nutrient
and sediment loading to waterways with subsequent impacts on drinking water quality and aquatic habitat.

The second category of change is parcelization, the dividing up of private land into smaller ownerships. The
impacts here are more often economic. Small ownerships, particularly those of less than 50 acres, are seldom
managed to produce sustainable yields of forest products. Increasingly, they become private “green space”
for their owners. The trees remain, but opportunities for sustainable production are largely lost. That might
not sound like much of a problem in a large country where there are ample supplies of forest products to
meet consumer demand. But over half of the timber used to produce wood and paper products in the United
States comes from the smaller private ownerships held by families, institutions, and companies. And those
are the forest tracts that are being converted to smaller and smaller parcels. The long-term impact, if not the
immediate effect, is an important national concern.
It can be an important local concern as well. As more of the local forest resource is withdrawn from timber
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production, local mills and forestry businesses suffer. At some point, they begin to go out of business or move
elsewhere. Mill closings have been common in recent years, and in many areas, the lack of available timber is
one of the reasons. When a local mill closes, the remaining forest owners have less access to markets, and
the feasibility of keeping their forests in sustainable production may become questionable. Increasingly, they
will look to sell the land, and often it will be most profitable to break it up into small pieces and sell it to
potential developers or homeowners. In this way, the processes of parcelization and fragmentation take on a
cascading effect, where each forest sale strengthens and hastens the rate of local forest conversion.

As people buy small forest tracts and build homes, the scattered patterns of rural housing become a local
economic issue. Rural homes impose significant costs on local services. Their owners need roads, schools,
transportation infrastructure, waste disposal, law enforcement and other local services, and the fact that they
are dispersed thinly across the region makes the cost of providing each service higher than where people live
in more compact arrangements. Seldom do the property taxes paid by scattered rural houses cover the
increased burden placed on local services.

3

Despite these and other concerns in many communities over forest changes, there often seems to be little that
can be done to address the situation. By the time the problem is recognized, it’s a fait accompli. Once the
forest is fragmented, it can possibly be restored by intentional management actions, but that process may
take decades, and will be highly unlikely where the non-forest land uses are long-lasting. A landscape with a
thousand small landowners can be re-assembled, theoretically, back into a few ownerships, but only with great
difficulty. So the general situation is that once these forests become fragmented or parcelized, it is nearly
impossible to restore their integrity.

It is hard to evaluate how rapidly these processes are taking place. Change often comes in the form of one
small, seemingly insignificant event at a time, and the full effect of the cumulative change may not be evident
for years. By the time the impacts are known, it is too late to do anything to alter them. Before the parcelization or
fragmentation occurs, however, there are effective preventative measures for a community to consider.
Depending on the local situation, it may be possible to use local planning and zoning to guide development
into more desirable patterns. Improving local incentives for sustainable forest management sometimes takes
the form of special tax programs for producing forest lands, or other ways to make sustainable forestry an
attractive reason to hold land in production. Sometimes land with high conservation values can be placed
under a conservation easement that limits development while providing compensation for lost land sale values.

This leads to the idea that communities could, if they knew where forest parcelization and fragmentation were
most likely to occur in the future, design locally adapted conservation measures that would slow these changes
or reduce their undesirable impacts. The question becomes: How does one see such phenomena in advance
of their actual occurrence?

This project is an attempt to harness modern scientific tools to that task. We begin by studying the trends in
land change over the recent past, using satellite imagery to identify where forests have been altered through
fragmentation or parcelization. Once those areas have been identified, we seek to understand what underlying
factors or drivers might have been the most important contributors to the change. If that can be understood,
perhaps we can assume that similar conditions or driving factors may continue to be important in future land
use changes. With such knowledge conservation program efforts can be prioritized to those forests most at
risk, with some hope that success will be improved.
Since fragmentation and parcelization are very difficult to quantify, especially over a large land area, we have used
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change in forest cover as a surrogate measure of the extent to which the forest has become fragmented and
parcelized. This is a reasonable approach in the northeastern United States, where the situation with change in
forest cover is not so much large extensive clearing of forestland, but a patch–by-patch clearing for development.
Forest fragmentation—conversion of a large, continuous forest into a scattering of small patches—can be
readily seen in satellite imagery. It may not, however, be visible from the local roads and thus remains hidden
from public view and consciousness. Parcelization is even less obvious, as property lines don’t show on the
land, and unless the new owners build roads and houses, the change may be difficult to discern.

This project demonstrates that past trends in parcelization and fragmentation, at least in the predominantly
hardwood forests of New York and southern New England where the methods were tested, are possible to
document. This is due, in large part, to the increasing skills in image processing and interpretation that we
were able to attract to the effort. Those people are recognized elsewhere in the report, and their contributions
were essential to the success of the analysis. Without an accurate means of comparing the current condition to
past conditions, the chance of understanding the most likely future is greatly reduced. 

Our research has shown what many land use and forestry specialists have felt to be the case. Further development
and land use change is almost certain in these areas, at least into the foreseeable future. That change will
not, however, affect all lands equally. Some areas are far more likely to experience it than others. Where a
community can focus its conservation efforts on those areas identified as most at-risk, the chances of retaining
a productive and sustainable forest while accommodating local growth trends are significantly enhanced.
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GEOMOD, A Dynamic Land Use Change Modeling Tool

With this project, we have successfully demonstrated the utility of a spatial land use change model, GEOMOD, as a
land use planning tool in areas under severe pressure from unplanned development and sprawl. Working with
two sites, the Thames River Watershed in Connecticut and Massachusetts and the Catskill/Delaware water
supply watersheds in New York (figure 1), we have demonstrated a scientifically rigorous method of projecting
likely future scenarios of development based on analysis of past rate and patterns of land use change. 

GEOMOD, developed by researchers at the State University of
New York College of Environmental Science and Forestry (SUNY
ESF), predicts the rate and spatial pattern of land conversion
based on past land use change.

4
Although there are many tools

now being used by the conservation and land use planning
communities, dynamic simulation, with its ability to visually
portray the importance of cumulative effects, change over time,
and driving forces, is an enormous enhancement to static GIS
mapping or build-out analysis. GEOMOD is extraordinarily
effective in helping people understand the dynamics of land
use change, see where forests are most at risk of fragmentation
and conversion to development, visualize future conditions, and
plan strategic approaches to the mitigation of harmful trends.
Knowing how, where, and why those changes are likely to occur
can be a powerful tool for conservation organizations, community
leaders, and citizens.

The Spatio-Temporal Modeling Approach

Spatial modeling, as we define it,
5

is the application of a numerical model that uses spatially distributed data
to simulate landscape dynamics. In the case of land use change modeling it implies that the spatial distribution
of various factors, such as topography, plays an important role in determining where humans exploit the
landscape. There sometimes exists confusion about the terms land use and land cover, and they are often
mistakenly used interchangeably. In this study we analyze the conversion of forest cover to non- or partial-forest
cover for which the new use is presumed to be some type of human activity, such as residential housing.
Thus we are in some ways working with both land use and land cover, the combination of which we refer to
as LULC. 

Spatial models of future LULC require two types of parameters—those that project how rapidly land is converted
to other uses and those that indicate where the change will take place, i.e. rate and location. GEOMOD, a
spatially explicit land use change model, identifies through a rigorous calibration/validation process those
spatially distributed biophysical, and/or socio-economic variables that explain past and current development
patterns, and projects them into the future assuming business as usual. It can be used to analyze any kind of
LULC conversion, for example, forest to pasture or pasture to suburban residential development, if such
changes can be detected through remote sensing.

5

Figure 1. Research site locations, indicated by
red boxes. Catskill/Delaware is on the left;
Thames on the right. Source: DeLorme Topo
USA. 
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The factors that often influence where people settle can include biophysical determinants such as topographic
position (elevation and steepness of slope), distance from rivers, soil type, and/or socio-economic factors
such as infrastructure, already-established settlements, distance to roads and markets, and density of
population engaged in agriculture and forestry. Demographic factors, such as such as an aging population,
which are available via population census may also explain why certain land is attractive to developers, or
simply available for sale, . 

The model allows for regional stratification in order to capture, for example, the effect of different government
policies in different political units on the pattern and rate of landscape development. The basis for analysis is a
time series of land cover maps derived from satellite imagery or aerial photographs. At least two time periods are
necessary, with sufficient time between the two for change in forest cover to have occurred. 

A model is a simplification of a complex system. An architect’s model of a building to be constructed is an
example. A computerized ecosystem model tries to capture and represent how the system works. We like to
think of it as a formalization of our assumptions about that system. Building a model that can be relied
upon requires a circular process of calibration and validation until the model gets as close to reality as is
possible given the information we have at the current time. A good model thus begins by using historical, or
what we call empirical data—measured and recorded—to calibrate the model. Some of these data must be
held in reserve to validate the model’s projections, in other words to see if the model is predicting correctly. 

An example would be a model that predicts the growth of trees based on the type of soil they are planted in,
and the amount of sunlight and precipitation they receive. To calibrate the model the researcher first needs
data that show how much trees actually have grown in different soil, sun and moisture conditions. Then
he/she writes the model to grow trees across the landscape based on the conditions found at each location.
Finally, to determine how well the model is doing, the modeler checks his/her predictions against the
growth information for other trees distributed across the landscape that were not used in the calibration
process, and determines statistically how well the model has matched the real growth (volume or biomass) of
this validation set of trees. The model’s mathematical equations that express the relation between tree
growth response and environmental conditions continues to be adjusted until the predictions match as closely
as possible the real world. 

An analysis of landscape change with GEOMOD is performed in the same way, testing the importance of
different variables like “distance from roads” or “slope” of the terrain to determine where development has
occurred at one point in time. Then, taking this information, the model projects where development is likely
to occur in the future and then checks against a map of the “real” landscape at that point in time. The closer
we are able to match the second time period, the more confidence we have that those are the important factors
that will affect the future distribution of development in a region. 

How well one factor, or a combination of factors, allows GEOMOD to predict the future time is measured by
the kappa-for-location (Klocation) statistic. The kappa statistic tells us how much better than chance alone the
model is in predicting areas that will be converted from forest to non-forest (with “0” being no better than
chance alone and “1” being a perfect predictor), i.e. the higher the kappa statistic the higher the factor’s
ability to identify correctly those forested areas that will be converted to non-forest in the future based on
their attractiveness for development. Percent cells correctly simulated can be deceiving especially when little
change has occurred in the landscape. The kappa adjusts for this. One could also test whether a predicted
quantity of change is accurate using the kappa-for-quantity measure.

6
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Objective 

Our objective in this study was to test whether the land use change model GEOMOD, heretofore applied
principally in tropical forested landscapes of the less developed world,

7
could reveal important insights into how

quickly, where, and in what pattern the working forested landscape of the highly developed northeastern United
States is being lost to other forms of land use. In its application in the developing tropics the model’s inputs have
been limited to maps of primarily bio-physical properties, but seldom included spatially distributed socio-economic
or demographic information. In the United States we wanted to test whether the addition of such information in
the form of, for example, US census data, county tax parcel maps, and real estate and labor statistics, might
enhance the model’s predictive power. The model has previously been applied to one other area of the northeast,
the Ipswich Watershed in Massachusetts, but there it primarily examined the influence of topography.

8

Study Sites

After considering several possible sites in the northeast,
the final selection was narrowed to two places, based
on criteria developed by the project team in the early
planning stages (see box on this page): a portion of the
Catskill/Delaware region in New York, including most of
the New York City municipal water supply watersheds;
and the Thames River Watershed and surrounding
towns in Connecticut, later expanded to also include
the Massachusetts towns in the watershed.

These largely forested places are under tremendous
pressure from local development and the sprawling
metropolitan areas of New York City, Boston,
Hartford and Providence (figure 2). As the largest
unfiltered surface water supply in the country, the
New York City Watershed is extremely vulnerable to
potential changes in land use. Protecting the remaining
forested landscape is a high priority for both the
local communities and the urban population of
New York City. The Thames River Watershed, in
northeastern Connecticut and south-central
Massachusetts, known as the “Last Green Valley”
between New York and Boston, is home to the
Quinebaug-Shetucket National Heritage Corridor,
honoring both its present rural character and its past
industrial history. Development pressures are typical
of those being experienced throughout the northeast,
and there are active forest conservation efforts in
both places.

7

Criteria for Choosing Research Sites

n Local or regional interest and willingness to
partner in the project on the part of conservation
organizations, local governments, and citizens’
groups.

n A reasonably-scaled study area that makes
political sense to the local partners; is large
enough to allow landscape inferences (such
as watershed impacts); and fits within the
technical constraints of GEOMOD for data
analysis.

n Adequate existing data sets on physical, social
and economic conditions so that the analysis
can be readily constructed without the need
for gathering a significant amount of new data.

n Land cover maps derived from remote sensing
imagery enabling construction of past land
cover history extending back 10-20 years.

n Contains large tracts of intact, privately-owned
forest as well as areas that are already developed.

n Considered to be at risk of losing forest to   
development and of further forest fragmentation.

n Located within a region of conservation focus
in order to maximize the project’s contribution
to the larger forest conservation agenda.

n At least one member of the research team
familiar with the area to aid in background,
contacts, and reality-checking.
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The Catskill Mountains of New York9

Our New York study site lies in the Catskill Mountains about 100 miles northwest of New York City.
Encompassing more than six counties and over 6,000 square miles of mountains, forests, rivers, and farmland,
the Catskills are often referred to as America’s First Wilderness because scholars trace the beginnings of the
environmental conservation movement to this beautiful area. With almost three dozen mountain peaks over 3,500
feet in elevation and six major river systems that annually attract the world’s most devoted fly fishermen, the
Catskills are an ecological resource of significant importance. The region’s rugged terrain has contributed
over the years to a sense of the area as remote wilderness, in spite of its nearness to the country’s largest
population center.

The two most prominent features of the Catskill region today are the nearly 300,000 acres of public Forest
Preserve land located largely within the Catskill Park, and the 1,584 square miles of catchment known as the
Catskill/Delaware Watersheds that provide 90 percent of the New York City water supply. This unfiltered water
supply has been made possible largely because in 1885 the New York State Legislature established the
Catskill Forest Preserve to be set aside as Forever Wild. In 1904 the Catskill Park was created to establish an
imaginary boundary, called the “blue line,” around the Forest Preserve, and surrounding private land.
Together the Preserve and the Park have grown over the years to approximately 700,000 acres, of which
about 60% is private land. 

But this is also a working landscape, and the coexistence of the two—wilderness and human society—side
by side is considered a grand and visionary landscape experiment in the Catskills. Farms and forests of the
region have provided livelihood to families for centuries. Catskill tanneries supplied most of the saddles used
in the Civil War. Hides were shipped from South America for processing into leather. High-tannin bark was

8

Figure 2. Night lights over northeastern
North America. The Catskill/Delaware
(left) and Thames (right) watersheds are
in the areas circled in red. Image from
NASA Lights of the Earth web site.
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stripped from hemlock trees and used to tan hides. The furniture making industry followed, using the trees left
behind. Cleared land was often sold for 50 cents an acre to mountain farmers. Furniture makers, lumberjacks,
charcoal producers, hoopmakers (hoops were used to hold barrels together), and wood acid manufacturers
all exploited the Catskill forest. Today, the cleared valleys and hillsides have returned to forest and forestry remains
important on private lands, primarily as a source of lumber. But little by little that landscape is being carved into
ever smaller parcels of land, and the effects of New York City weekend sprawl and development may have significant
impact on the long term viability of forestry in this region. 

The Thames River Watershed of Massachusetts and Connecticut10

The New England study area covers most of the Thames River Watershed and adjacent towns, almost 1900
square miles of rural and forested land in northeastern Connecticut and south-central Massachusetts. An
estimated thirteen percent of this land is permanently protected from development, either in the form of public
land or conservation easements. Known as the “Last Green Valley,” it is one of the last largely rural areas
remaining in the highly-developed section of the east coast between Boston and Washington, D.C. It is home
to the Quinebaug Highlands, a 269 square mile region of mostly privately owned forestland in Connecticut
and Massachusetts, identified as one of Connecticut’s Last Great Places by The Nature Conservancy; the
4,000 acre Norcross Wildlife Sanctuary in Massachusetts; the Yale Myers Forest, a 7,000 acre research and
teaching forest; several state forests; and the Pawcatuck Borderlands, a 200 square mile area of largely
contiguous forest along the Connecticut-Rhode Island border. The Quinebaug-Shetucket Rivers Valley was
declared a National Heritage Corridor in 1994, to help with efforts to protect the unique history and rural
character of this New England valley.

The region is rich with wildlife and healthy hardwood and coniferous forests. The larger landowners manage
their forests for timber and other forest values, and there are numerous small saw mills operating throughout
the area.  Now this rural region is under pressure from the intense development of surrounding urban and
suburban areas. Bordered by Worcester, Massachusetts to the north, New London, Connecticut to the south,
Providence, Rhode Island to the east, and Hartford, Connecticut to the west, the area has undergone significant
land use changes over the past fifty years as housing and industrial development has encroached upon formerly
rural and forested land. Because so much of the forestland is privately owned, there is no guarantee that unique
natural areas like the Quinebaug Highlands will remain intact or immune to development pressures, and therefore
a number of conservation organizations have mobilized an effort to protect this region from development. 

Community Input

Local input was considered vital to ensure both that assumptions could be tested against local knowledge
and that the results would be meaningful and useful to the communities who are working to conserve their
forested landscapes and rural character. Two community workshops were held, one in New York on March
19, 2002, the other in Connecticut on May 21, 2002. Attendees included representatives of various local and
regional conservation organizations and government agencies; local citizens; and forest landowners. (See
appendix A for workshop summaries and lists of attendees). Follow-up workshops were held in each location
to present the results and discuss ways to get this information into the local planning processes. Input and
feedback from the participants was incorporated into the project plan, wherever feasible. 

9yale university’s global institute of sustainable forestry
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Working Hypotheses 

A working hypothesis about what is driving land use change in each area was developed during the first
community sessions, based on local knowledge and intuition.  In some cases, these conclusions were supported
by the findings in the project; in others, the findings seem to point elsewhere.  In either case, developing and
testing a working hypothesis helps focus the study on important factors and provides a useful way to bring
out new or surprising findings in the study.

New York Catskill/Delaware Watersheds

Hypothesis: Parcelization is more of a current factor than fragmentation and will be hard to detect or predict.

Findings: Parcelization and fragmentation are both occuring; parcelization tends to lead to fragmentation—land
that is parcelized is 1.5 times more likely to be subsequently fragmented than land that has not been divided into
smaller ownerships; parcelization cannot be detected via satellite imagery unless accompanied by fragmentation.  

Hypothesis:  The pattern of forest fragmentation and conversion is determined primarily by distance from
New York City, distance from major roads, distance from ski resorts/new resorts (growth nodes); New York
City water supply watershed regulations; taxes; age of landowner; and population of permanent residents
vs. housing units (second home development).

Findings:  The pattern of forest fragmentation is driven primarily by distance from urbanized areas (meaning
those areas characterized by residential, commercial, or industrial building), elevation, slope, distance
from local and secondary roads and population density.  Second home development is an important factor
in regional land use change dynamics. Ski resorts and landowner age were slightly less important in
predicting where development has occured in the past. However, it should be noted that the scale of the
window of analysis means that more importance will be given in the model to urbanized areas (since there
are more of them) than rural development, such as ski resorts.  Regulations and taxes were not tested due
to unavailability of adequate time-series spatial data for these factors. 

Thames River Watershed

Hypothesis: Threats to forests are from parcelization, fragmentation, habitat destruction, and conversion.

Findings: Fragmentation of forestland has occurred since 1985, although new development is projected to
happen mostly on smaller, isolated fragments of forestland near already developed land.  This is partly due to
the fact that much of the forestland in this region is under some type of protection from development. It was not
possible to examine parcelization effects since we did not have sufficient data about land ownership changes.

Hypothesis: The rate of forest fragmentation and conversion are being driven mainly by population
growth; zoning regulations; changes in timber markets; casino development; economic growth in nearby
major cities; land prices; distance from major cities; upgrade and expansion of roads; and the collapse of the
dairy industry.  We assumed that the pattern would be a function of distance to roads, to major urban areas,
casino development, and perhaps a variety of socio-economic factors that make places more attractive or more
likely to be undergoing change.

Findings: The pattern of forest loss in this region is best predicted by distance from 1985 agricultural lands,
soil type, and distance from urban areas.  Population, casino development, and roads were somewhat less
important drivers of land use change, as were most socio-economic factors anaylzed.  However, socio-economic
factors, prior settlement patterns, and soil types are inter-related and thus probably co-dependent with the top
three drivers.  We did not have a way to incoroprate the collapse of the dairy industry into the analysis; and data
was not available at a useful scale and format for analyzing zoning regulations or changes in timber markets.

dynamic models of land use change in northeastern usa



Data Creation and Collection
Two data sets are required in this method of modeling land use change over time: land cover, which is the
dependent variable; and the so-called potential driving factors, or independent variables. The assumption is
that land use change (using land cover as a surrogate for land use) is a function of one or more biophysical
and socio-economic factors, such as land prices, population growth, and proximity to natural amenities.

Dependent Variable—Land Cover11

Land cover maps for each region were the primary source of information for both the rate and location of
change in forest cover in the two regions over time. For the New York study we relied on the USGS 1992
National Land Cover Data (NLCD) with 21 categories (figure 3) as our time 1 baseline (model calibration).
Classifying satellite imagery into land cover/land use classes is as much an art as a science, as totally different
land uses can sometimes have the same reflectance values. Thus a critical step in classifying satellite
imagery is to perform an accuracy assessment, by either ground-truthing or comparing with aerial photographs.
For the region of our analysis (figure 4), we compared the 1992 land cover values to 1994 aerial photos
and found 90% accuracy.

12
For a second time period we classified a May 2001 satellite scene to use for

model validation (also visible in figure 4). Our post-classification assessment yielded 99% accuracy at the pixel
level when compared to year 2001 digital orthorectified quarter quadrangle (DOQQ) aerial photographs. 
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New York State Land Use/Land 
Cover 1992
New York State Land Use/Land 
Cover 1992

Figure 3. Baseline Map for Catskill-Delaware Study.  Source: USGS National Land
Cover Data Set.



In the case of the Thames study, the Center for Land use Education And Research (CLEAR) at the University
of Connecticut provided us with a four-year (1985, 1990, 1995, and 2002) land cover time series derived
from satellite imagery

13
(figure 5). Eleven categories are delineated. “Agriculture” includes both cropland and

pasture. As in other studies we have undertaken, agricultural lands are easily confused in the classification
process with grasslands such as parks, and/ or with other grass and shrub-covered lands such as large
lawns, fields, or meadows associated with residential or municipal property.
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We used 1990 as time 1 (model calibration), and 2002 for time 2 (model validation). The 1985 map allowed
us to look at the relation of lands newly developed in 1990 with respect to lands already developed in 1985.
It should be noted that, as we did not have more than two time series land cover maps for New York, it was
not possible to use this “change from a previous time period” in the New York analysis. Our results, therefore,
cannot be fully compared across both regions.

We stratified each region by political units. The New York region included parts of five counties centered on
the New York City water supply catchments (figure 6). The Thames site included 59 individual towns in
Connecticut and Massachusetts lying within the Thames watershed or immediately adjacent (figure 7). Public
and private lands that are currently under conservation protection in the Thames, as well as public lands in
New York acquired by both New York City and State to protect city drinking water quality, were excluded from
analysis, as these lands are assumed to be unavailable for future development or other land use change (figures 8
and 9). Eighteen percent of the New York study area and thirteen percent of the Thames area is in this category. 

Finally, all maps were reduced to two main categories. Those classified with the value “1” represent all forested
land. A value of ‘2’ indicates land that is in other uses such as agriculture, residential, industrial, commercial properties,
etc. In the Thames the “Forest” class includes deciduous and coniferous forests and forested wetlands, while
“Non-forest” represents the developed, turf and grass, agriculture, barren and utility classifications (Figure 10). 

12 dynamic models of land use change in northeastern usa

1992 20011992 2001
Figure 4. Window of analysis showing NLCD 1992 data juxtaposed with classified 2001
land cover for the Catskill-Delaware Region of analysis.

1992 2001
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Figure 5. Land cover history for the Thames Watershed and
surrounding towns, 1985 to 2002. Source: Center for Land
use Education And Research (CLEAR) at the University of
Connecticut.

1985 2002
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Figure 6. Study area boundary. Areas of New
York City water supply watersheds and portions
of counties included in study area.  
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Figure 8. Public land excluded from
New York study.

Figure 9. Thames Watershed public and private
conservation areas excluded from analysis.

Figure 10. Thames Watershed 1985–2002 land cover
reclassed to represent cells that are candidates for change
and those that are not. Black areas indicate lands excluded
from analysis—conservation lands and water.

1985 2002
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In the Catskill-Delaware Region (figure 11) “Forest” includes deciduous, evergreen and mixed forest, and
woody wetlands while “Non-forest” includes low and high intensity residential, commercial, industrial,
transportation, hay, pasture, row crops, urban, recreational grasses, quarries, strip mines, and gravel pits.
There is much debate about whether lands classified as “agricultural” in 1992 are in fact clear cuts reforesting
or pasture lands reverting to forest, and whether the NLCD map overstates or understates the amount of land
actually “deforested” as of 1992. The New York City Department of Environmental Protection map for the
same time period shows (within the NYC water supply watershed only – figure 12) a much larger area in agri-
culture in 1992, particularly in the Cannonsville Watershed in Delaware County. Our accuracy assessment of
this area of discrepancy on the 1992 NLCD map used in our analysis yielded 90% accuracy (using 1994
aerial photos as the reference criteria). 
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Figure 11. Catskill-
Delaware reclassified
1992 and 2001 land
cover. Black areas 
represent areas of water,
wetlands, reforestation
and NYC DEP and NY
State lands masked out,
i.e. not candidates for
change from forest to
non-forest.

Figure 12. For comparison, the NYC DEP classification of Forest/Non-Forest in the watersheds is shown next to
the NLCD ’92 land cover map.
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Independent Variables—Factors Affecting Location of New Developed Areas

An initial list of many possible drivers of land use change in the northeastern United States was derived from
a combination of literature search, team experience/knowledge, and community input. The resulting list was
then used to determine availability and usability of various data sets for incorporation into the modeling
process (table 1). 
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NNYY CCTT//MMAA
AAvvaaiillaabbllee  ffoorr  aallll  tthhrreeee  ssttaatteess  iinn  ggeeoossppaattiiaall  ffoorrmmaatt  aatt  ssccaallee  uusseeffuull  ffoorr  aannaallyyssiiss

Demographics:  Population x x
Distance from metropolitan growth nodes x x
Housing density and type x x
Hydrography x x
Protected open space x x
Railroads, utility lines x
Roads x x
Second homes and non-resident owners x x
Topography (elevation, slope, aspect) x x

AAvvaaiillaabbllee,,  nnoott  iinn  ggeeoossppaattiiaall  ffoorrmmaatt;;  eeaassiillyy  ccoonnvveerrtteedd
Building permits x
Employment in the service economy x
Housing prices; housing sales x
Labor force by sector x
Unemployment rate x

AAvvaaiillaabbllee,,  nnoott  iinn  ggeeoossppaattiiaall  ffoorrmmaatt;;  nnoott  eeaassiillyy  ccoonnvveerrtteedd
Development nodes (casinos, ski resorts) x x
Zoning regulations

AAvvaaiillaabbllee  bbuutt  aatt  ttoooo  ccoouurrssee  aa  ssccaallee  ffoorr  uusseeffuull  aannaallyyssiiss
Economic cycles
Federal spending programs:  Education, Transportation, Sewer & Water; Infrastructure
State spending programs: Education, Transportation, Sewer & Water; Infrastructure
Tax policies
Timber prices

NNoott  rreeaaddiillyy  aavvaaiillaabbllee  ffoorr  aallll  tthhrreeee  ssttaatteess,,  oorr  nnoott  iinn  uusseeaabbllee  ffoorrmmaatt
Education demographics
Local economy - relative importance of farming, forestry, ranching, mining
Malls, big box stores
Property taxes - rates and structure
Ratio of land sale prices to timber stumpage prices
Real estate conveyance taxes
Rural Industry
Soils x
Timber markets
Transportation

DDiidd  nnoott  iinnvveessttiiggaattee  dduuee  ttoo  pprroojjeecctt  rreessoouurrccee  ccoonnssttrraaiinnttss
Commuting distance from employment base
County business patterns
Emergence of "edge cities"
Employment in surrounding areas
Farm income
High amenity value natural features
Income
Land pricing
Land tenure patterns
Level at which land use planning takes place (municipal, county, region, state)
Level of regional cooperation and coordination
New jobs created by sector
Office and industrial parks
Population in surrounding areas
Schools data by school district
State of the planning process:  how long in existence; age of plan; volunteer or paid staff
Tax rates in surrounding areas
Vitality of older cities and suburbs

IInncclluuddeedd  iinn  AAnnaallyyssiiss

Table 1: Potential factors influencing where forest fragmentation and loss from sprawl occurs
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The project encompassed three states, and many data were not available in all three. Socio-economic data
have to cover the same time period as the land cover data to provide meaningful analysis of drivers. So that
the broadest possible set of factors could be tested in at least one of the sites, data that were available only in
Connecticut and Massachusetts were used in the Thames analysis, even though they were not available for
the Catskill/Delaware analysis. Although this approach gives us more robust information about the availability
and utility of socio-economic data and its relationship to forest fragmentation and parcelization dynamics,
the disadvantage is that it limits our ability to draw conclusions about commonalities across the two sites.

Thus, with the exception of the US Census data that we purchased for 1990 and 2000, these data sets are not
equivalent across both regions. In the Thames study we had state labor department employment information
by town, including the number of employees in each labor sector, such as construction, which we thought
might be an indicator of growth. For the Thames we also had information on housing, such as the number of
home starts, building permits and sales, and median sales price. And finally we had a soil map for the
Thames that we did not have for the New York study. 

On the other hand, in the New York region we had tax parcel data for 2000 made available by the New York City
Department of Environmental Protection. This allowed us to analyze who owns how much forestland in the region
and whether or not these owners are local residents. Finally, in New York, the elevation data were higher resolution,
although of the same scale (1:24,000) as the Connecticut/Massachusetts data. In both instances the hydrography
(water features) data were not of the same scale as the hypsometric (elevation) data.

Data Collection

Collecting, organizing, formatting and managing geospatial data is time consuming; thus we limited our
efforts to those data that were either readily available in geospatial format, or easily converted. The exception
was the location of “growth nodes”, such as ski resorts and casinos. There is no geospatial data base of
major developments (which would also include malls, and commercial and industrial parks), however, as
input was strong at both community workshops that these growth nodes were important drivers of secondary
development, we used a manual process to locate and georeference ski resorts and casinos in the study areas.

Data and sources included in the analysis are shown in appendix C. All three states have web sites where
certain GIS (Geographic Information System) data layers (georeferenced, spatially explicit maps containing
features such as rivers, roads, etc.) of mostly biophysical data and political boundaries can be downloaded.
The United States Census Bureau is the original source of all population and housing data. The raw census data,
available at the US Census Bureau web page, are very difficult to use, especially because the georeferencing is
not automatic, but must be interpreted and managed by a technically proficient user. To avoid this resource-
intensive work on data preparation, we chose to purchase data in an easy-to-use GIS format from Geolytics, a
commercial company, which produces CDs of census data to the census block level in ArcView shape files
and tables.

If data were not accessible on the state GIS web site, then a more intensive search was conducted by contacting
various government offices. The socio-economic data obtained this way were then converted from either
spreadsheets or hard copies to GIS files. 
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Combining data from two states, Connecticut and Massachusetts, was a major undertaking. Even the state
boundaries in each state’s GIS system do not exactly line up. Other GIS data, such as roads, based on census
TIGER files, and hydrological features matched up very well. Socio-economic data layers (other than census)
were created from individual files and documents and georeferenced to town boundaries, which was a
relatively easy task once the town boundary maps were corrected for the state line problem. 

The soils data were the most problematic. Although both Connecticut and Massachusetts have GIS files of
county soil maps, they use different nomenclature for what are obviously the same soil types (most apparent
at the state border). To derive one soil map for the entire Thames study area, the soil series in each state
were classified into general categories (e.g. “Agawam fine sandy loam” was reclassified to “fine sandy
loam”), and obvious discrepancies at the state border were corrected. 

Forest Products Industry Data

Loss of forestland inevitably leads to loss of the local forest products industry, hence feeding a vicious economic
cycle where landowners have no ability to sell forest products to support the cost of owning the land.
Consequently, we wanted to include in the analysis some indicator of the size of the forest products industry
over time in each of the study sites. An extensive effort was made to find some applicable data for the
Thames study area, to no avail. 

Town- and county-level data on the value of the Connecticut and Massachusetts wood and forest products
industries were not readily available. Federal and state government offices and databases did not have the
desired information. For instance, the County Business Patterns database had economic data at the county
resolution, but it was limited to employment and payroll information, with no data available on the actual
value of the industries. Conversely, the Bureau of Economic Analysis had data on the value of wood and forest
product industries, but only at the state level, and they were unable to provide the county- and metro-level
data from which their state reports were presumably assembled. Queries with the New England Agricultural
Statistics Service and the Massachusetts and Connecticut Departments of Economic and Community
Development yielded no information. 

Industry and trade groups such as the American Forest and Paper Association, the Massachusetts Forestry
Association, the New England Forestry Foundation, the Massachusetts Maple Producers Association, and
academic institutions such as the University of Connecticut had state-level data, but nothing at finer resolutions. 

The best source of data was the 1997 Economic Census, which had data at the county- and metro-level for
the shipment values of manufactured goods, in addition to the sales values for wholesale and retail trade.
Industries covered included lumber, paper, and wood products. Unfortunately, industry data were often listed
as, “withheld to avoid disclosure,” and therefore unavailable. Additionally, the Economic Census is only held
every five years, and 1997 is the first year in which specific wood products information is available; prior to
1997, the lumber, paper, and wood products data are grouped nonspecifically under “wholesale,” and
“manufacturing,” with no way to separate them into industry-specific information. The 2002 Economic
Census is currently underway, but until those data are compiled, 1997 is the only year for which the desired
data are available.

After a similar search of government and industry sources for the Catskill/Delaware region, it was determined that
the forest industry data available for the region were generally not of a spatial or temporal resolution that would allow
comparisons between the recent history of the timber industry in this region and land use/land cover changes. 
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Results—Catskill-Delaware Region

Empirical Rate of Forestland Loss and Apparent Causes

With the exception of Ulster County with prime Hudson Valley real estate, population growth in the counties
included in our study area has been fairly flat going back as far as 1890 (figure 13). What these data do not
reveal, however, is the flux in weekend and seasonal inhabitants, which promotes development of the facilities
and services they require. Within the boundaries of the New York City Watersheds there are 68,400 parcels of
private land covering over 900 thousand acres. As evidence of the ownership dynamics in this area, only
36,400 of these parcels covering 444,870 acres are owned locally, while people whose home address is outside
the region own 32,000 parcels covering 482,250 million acres.  This means that 52% of the private land is
owned by non year-round residents, while 48% is locally owned.  Thus resident population, as measured by
the 10-year census, cannot be used in this region to predict a future rate of forest fragmentation. This is also
evidenced by the widely varying discrepencies between the 1990 and 2000 population statistics and the
Catskill forest cover in the five counties (figure 13).

Within the entire study area of 1.8 million acres, 376,000 acres are owned by the city and the state to protect
NYC drinking water. Assuming that this land will be protected in perpetuity, we excluded it from our analysis,
hence our results are focused on changes in the 1.4 million acres of private forestland in the region. Our
findings indicate that private forests are disappearing at a rate of 16,187 acres (1.3 %) each year, for a total
of 145,685 acres in the nine years between 1992 and 2001, in a pattern that is clearly evident of increased
fragmentation of the forest resource. If that same trend continues, the region will lose another 162,000 acres
of private forests by 2011. To arrive at this number, we derived the rate of forest conversion from the classified
satellite imagery (1992–2001) and extrapolated that same rate into the future. This rate of forest loss may or
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Figure 13. Population statistics for counties in the area of analysis (left) and population vs. forest cover change (right).

Towns Included in Tax Parcel Ownership Analysis

Andes Deposit Hunter Masonville Shandaken
Ashland Fallsburg Hurley Meredith Sidney
Bovina Franklin Jefferson Middletown Stamford
Broome Gilboa Jewett Neversink Tompkins
Colchester Halcott Kortright Olive Walton
Conesville Hamden Lexington Prattsville Wawarsing
Delhi Hardenburg Liberty Rochester Windham
Denning Harpersfield Marbletown Roxbury Woodstock

County Population     Forest Cover 
Change Change

1990-2000     1992-2001

Delaware 1.76% -7%
Greene 7.72% -3%
Schoharie        - 0.87% -3%
Sullivan 6.77% -6%
Ulster 7.53% -5%
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may not remain the same in future years, and will likely have some relationship with economic activity, however,
we were not able to find an economic database for the last 10 years at a scale that would allow us to look for
correlations between economic activity and land use change. 

In 1992 privately-owned lands were 86% forested. By 2001, they were 79% forested.  Delaware, Ulster and
Sullivan, are losing forest faster than Greene and Schoharie (table 2). At the same time that private forests
were being converted to other uses, some land was apparently “reforesting,” i.e. land that was not classified
as forest in 1992 was by 2001 showing up as forest on the satellite imagery. Some of this land may be working
forest, i.e., regrowth after silvicultural treatment; some may be former agricultural land acquired by the NYC
DEP. This merits further investigation. Considering the “reforesting” areas, the net change was 122,714 fewer
acres in private land classified as “forest.” In spite of the regrowth, the overall loss of 12% of the private
forestland over the nine-year period far exceeds the amount that is “reforesting,” which is 1.5% of the private
forestland in 2001. 

Including the publicly-owned forest, the entire region analyzed
went from 87% to 81% forested over this nine-year period (table
3), and we project this to drop to 76% by 2011. This projection
includes “reforestation.” If ”reforesting” land is not developed in the
meantime, it will take more than the time period of our projections
to grow back into a full closed-canopy forest. Therefore these
projections are likely to be on the high side, with actual forest
cover somewhat lower.  

Within the New York City Watersheds, parcel size is decreasing
and our analysis indicates that forest land that has been
parcelized is 1.5 times more likely to be converted to other uses than land that has not been divided. The
average parcel size has gone from 18 acres in 1985 to 14 acres in 2000,

15
clearly indicating increased

parcelization of forestland since 1985. As evidence that parcelization (smaller ownerships) does lead to further
forest fragmentation, our data from a sample of 122,000 acres, show that lands that had been parcelized
between 1984 and 2000 experienced a higher rate of forest loss (8%) than those that had not been
parcelized (5.5%).  

Of the six New York City watersheds located in the region of analysis, all but the Cannonsville are entirely
represented. Of the total 1.8 million acres analyzed, 877,354 acres lie within the NYC water supply catchments.
Clearly those with the most publicly-owned land experienced the least loss of forest cover from 1992 to 2001
(table 4).  The portion of the Cannonsville Reservoir catchment that lies within the study region, which is 97%
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Forest 
1992 

Non-forest 
1992 

Forest 
2001 

Non-forest 
2001 

% 
Forested 
in 1992 

% 
Forested 
in 2001 

Acres of 
1992 Forest 

Lost 

Acres 1992 
Non-forest 
Reforesting

Net Acres 
'Forest' 

Lost 

Delaware 366425 64820 322781 108464 83% 75% 49844 6200 43645

Greene 174780 18871 161274 32376 88% 84% 17048 3543 13506

Schoharie 83071 11188 76825 17434 86% 82% 8000 1754 6247

Sullivan 262040 38350 236681 63709 86% 79% 30846 5487 25359

Ulster 360527 48002 326569 81960 87% 80% 39946 5988 33958

Total 1246843 181230 1124129 303944 87% 79% 145685 22972 122714

 

 

 

Table 2: Catskill/Delaware forest history (acres). All numbers include only privately-owned lands.

 
Forest 
1992 

Non-forest 
1992 

Forest 
2001 

Non-forest 
2001 

% Forested 
in 1992 

% Forested 
in 2001 

Acres of 1992 
Forest Lost 

Acres 1992 
Non-forest 

Reforesting
Net Acres 

'Forest' Lost

Delaware 
Greene 
Schoharie 
Sullivan 
Ulster 

Total 

 
% Forest Including Public 

Land 

 1992 2001 

Delaware 83% 76% 
Greene 90% 87% 
Schoharie 85% 81% 
Sullivan 85% 78% 
Ulster 90% 85% 

Total 87% 81% 
 
Table 3. Percent forested, including all lands
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Table 3: Percent forested, including all
lands, by county 1992 and 2001



private land, has lost 10 percent forest cover during the 9 year period.  The Ashokan Watershed, with only
37% private ownership has lost only 2 percent, while the Neversink, with 45% private land has lost 1 percent
of its forest.  The reader is reminded that "forest cover" includes some reforesting land.  The actual loss of
1992 forest is 19 percent in the Cannonsville and 2 percent in the least impacted basin, the Neversink.
Overall the NYC catchments have gone from 88.7 percent "forest cover" to 84.2 percent in a nine year period,
which includes a loss of 8 percent of the 1992 forest but a net change of only 4.5% due to reforestation of
agriculture and forestry lands since 1992. The true loss, therefore, is somewhere between 4 and 8 percent or 0.4
and 0.9 percent per year.  The watersheds were analyzed as potential determinants of the pattern of landscape
development, but ranked low among candidate drivers based on the kappa statistic of validation (table 5).

Pattern of Forestland Fragmentation, the Empirically-Important Factors and
Their Ability to Predict the Future Location of Development

In the Catskill-Delaware study we tested the ability of 18 factors to accurately predict where development
(defined as change from forest to non-forest) occurred between 1992 and 2001. The results of our analysis
show that development in the Catskill-Delaware region is driven primarily by the increasing number of non-local
land owners desiring a piece of rural forested America, and the establishment of the facilities and services to
support that weekend/vacation time population. In the five counties that surround the heart of this region the
most important biophysical factors influencing what land is selected for development are elevation and slope,
which is not surprising in a mountainous region. The socio-economic factors are distance to “urban” areas,
population density, and the economic “infrastructure” of local and secondary roads (table 5). 

We compared the simulated 2001 results using the “vulnerability” map for each factor, to the actual 2001
land use map.  The goodness of fit between the simulated map and the actual map is indicated by the kappa
statistic, which measures how much better than chance alone the model is in predicting areas that will be
converted from forest to non-forest (with “0” being no better than chance alone and “1” being a perfect predictor).
In this case, with our best driver set we achieved overall a 90.9% agreement between the simulated and the
real map, with a very high kappa of 0.7319. It is interesting to note that while population density returned the
same kappa as distance to secondary roads, including it with the top five drivers reduced the kappa, and hence
the predictive power of the first five combined. Each additional driver tested in the model reduced the “goodness
of fit” even more. 

Zooming in to get a better view in figure 14, we illustrate the “goodness of fit” between the simulated 2001 and
the actual 2001 map. Working with 30 x 30 meter square cells, the four classes represent 1) cells left in forest
by the model that were in fact still forested in 2001 (correct), 2) cells simulated as converted from forest that
were in actuality still forested in 2001 (incorrect), 3) cells left in forest by the model that were actually non-forest
in 2001 (incorrect), and 4) cells simulated as non-forest that either remained as non-forest or were in fact
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NYC Watershed Basins Cannonsville Schoharie Pepacton Ashokan Neversink Rondout Total Basins

Outside NYC 

Watersheds

Total Area 

Analyzed

Proportion Public land/Basin 2% 22% 20% 58% 53% 46% 29% 7% 17%

Percent Private Land 97% 77% 78% 37% 45% 50% 69% 92% 79%

Percent Water 0% 1% 2% 5% 3% 4% 2% 1% 2%

Percent Forested in 1992 75% 88% 89% 97% 97% 96% 89% 84% 87%

Percent Forested in 2001 65% 85% 84% 95% 96% 92% 84% 78% 81%

% Change 10% 3% 5% 2% 1% 4% 4% 6% 5%

% Loss of 1992 Forest 19% 7% 8% 3% 2% 5% 8% 11% 10%

Table 4: Change in forestland in the NYC Watersheds basins 1992 - 2001 (percentages are rounded).

dynamic models of land use change in northeastern usa
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Individual Drivers - Unconstrained  Individual Drivers - Constrained Neighborhood  

Driver Rank Kappa %Correct   Driver Rank Kappa %Correct

Population Density 1 0.5370 84.31  Distance from Urban Areas 1 0.7285 90.80 

Elevation 2 0.5255 83.92  Elevation 2 0.7271 90.75 

Population over age 65 3 0.5239 83.86  Slope 3 0.7263 90.72 

Distance from Urban 4 0.5176 83.65  Distance from Local Roads 4 0.7260 90.71 

Distance from State Owned Lands 5 0.5176 83.65  Distance from Secondary Roads 5 0.7255 90.69 

Distance from Local Roads 6 0.5035 83.17  Population Density 6 0.7253 90.69 

Distance from Agricultural Lands 7 0.5021 83.12  Distance from State Owned Lands 7 0.7250 90.68 

Slope 8 0.4983 83.00  Distance from Primary Roads 8 0.7248 90.67 

Distance from Secondary Roads 9 0.4979 82.98  
Distance from Hydrological 
Features 9 0.7241 90.65 

Distance from Ski Resorts 10 0.4970 82.95  Aspect 10 0.7241 90.65 

Owner Occupied Housing  11 0.4939 82.85  Distance from Water 11 0.7241 90.65 

Distance from Primary Roads 12 0.4901 82.72  Basins 12 0.7236 90.63 

Distance from Water 13 0.4885 82.66  Distance from Route 28 13 0.7235 90.63 

Distance from Route 28 14 0.4854 82.56  Population over age 65 14 0.7235 90.63 

Distance from NYC 15 0.4848 82.54  Distance from NYC 15 0.7232 90.61 

Aspect 16 0.4813 82.42  Distance from Ski Resorts 16 .07229 90.61 

Distance from Hydrological 
Features 17 0.4812 82.42  Owner Occupied Housing  17 0.7227 90.60 

Basins 18 0.4787 82.33  Distance from Agricultural Lands 18 0.7224 90.59 

        

Top 5 Drivers  0.5633 85.27  Top 5 Drivers  0.7319 90.91 

       

Table 5: Comparison of ability of individual drivers to re-create the 2001 landscape under an unconstrained 
simulation (left) and one restricted only to those cells falling within 30 meters of previously developed cells (right).

yale university’s global institute of sustainable forestry

Figure 14. Catskill/Delaware validation map zoomed in to 
illustrate “goodness of fit” between simulated 2001 map and
real 2001 map. % correct = 90.91; Kappa = 0.7319; 
Drivers = Distance to Urban areas, Elevation, Slope, Distance to
Local Roads, Distance to Secondary Roads.

Simulated Forest; Actual Forest (Correct)
Simulated Non-Forest; Actual Forest (Incorrect)
Simulated Forest; Actual Non-Forest (Incorrect)
Simulated Non-Forest; Actual Non-Forest (Correct)



converted to non-forest use (correct). This is perhaps the most intuitive way to visualize how well the model
can predict the actual pattern of development over the nine year period. 

The model can be allowed to select all of the highest weighted cells across the region, or be constrained to
a neighborhood. Under the unconstrained simulation the kappa was considerably less than that achieved
when the model was constrained to select within a distance of 30 meters of already developed land. This
suggests a strong clustering of development as opposed to dispersal of settlement. 

Furthermore, the top six factors are not the most significant in all counties (table 6), highlighting the
differences in the underlying topography, and we assume, the different socio-economic forces at play, as well
as the land that is available for sale. For instance, the drivers of high development preference are distance
from water in Delaware and Greene Counties, but distance from publicly-owned lands is more important in
Schoharie and Sullivan Counties. Also, in the three counties with the greatest topographic variation—
Schoharie, Sullivan and Greene, aspect is one of the top five factors. This illustrates a preference for both flat
land, which lessens development costs, and aspect, an indicator of sunlight in a region of dark valleys.
Elevation is one of the most predictive factors in 3 of the 5 counties.

Nonetheless, the kappa statistics are quite close for all factors, indicating the interdependence of topography,
roads, population, and urban development. Using these factors in combination in the GEOMOD process has
given us great predictive power to project the pattern of future land development. We believe such information
can be very useful to communities, planners and developers. 

Future Projections

Simulation of the future landscape was performed at the county level using the best set of drivers for each
county (table 6). The time period selected for the projections was based on how far back we were able to
analyze the rate of change, so that in the Catskills where we had land use data for only 1992 and 2001, we
project forward only 10 years. For each county, we assumed the same rate and pattern of change that we
have seen for the 1992-2001 period. Sites for future development were selected from the areas of highest
weighting in the forest-fragmentation potentiality map (figure 15a).  

Weights were derived based on the amount of development that has already occurred within each county on
land with similar characteristics relative to the five factors from among distance from urban areas, elevation,
slope, distance from local roads, secondary roads, primary roads, rivers, and population, that together yielded
the best "goodness of fit" between the simulated and the real 2001 map for each county. For the final risk
map used for future projections (figure 15a)  "distance to urban areas," important in all five counties, was
updated to reflect distance from all areas in "urban" uses by year 2001. This map, when summarized in
three categories from high to low potential for development, allows communities to identify quickly those
areas most at risk within their county. The areas of highest vulnerability exhibit a linear pattern that appears
to follow roads, which follow streams up the narrow valleys, as has been the case in the past.  

Although we received a lower kappa when analyzing the region as a whole, i.e. without stratification by county,
figure 15b illustrates which areas regionally are most at risk based on previous development on land with
similar characteristics relative to the five top factors for the region.  
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Using GEOMOD, we simulated the rate and pattern of forest fragmentation out into the future from 2001 to
2011 (figure 16). The results show Delaware and Ulster County respectively losing 55,000 and 44,000 acres
of their 2001 forest cover by 2011 (figure 17). This is a reduction of 17% and 14% of each county’s remaining
privately-owned forest (table 7). For the entire region of analysis, using the 1992-2001 rates, we estimate that
another 162,000 acres of privately owned forestland will be lost to development, leaving the area 76% forested 
(including public and reforesting lands) by 2011, down from 81% in 2001 (table 8). Not only does this imply
loss of the working forested landscape but these results could have significant impact on New York City water
quality as well. Of all the NYC water supply watersheds in the analysis, we project the greatest loss of forest
cover in the Cannonsville Watershed—approximately 30,000 acres, amounting to 18% of its private forests by
year 2011, followed by the Pepacton, which will lose 11% (figure 18).

Not only is there loss of forest, the remaining forest is more fragmented.  Using a simple measure over the
entire study area of “area of intact forest” vs. “perimeter of forest patches,” the area:perimeter ratio was
187:1 in 1992; 150:1 in 2001 and is projected to be 105:1 in 2011.  Forest patches are getting smaller, with
more edge environment, which has implications for wildlife, invasive species, and water quality.
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Table 5. Although first the five drivers on the left provided the highest predictive power for the region as a whole, this table illustrates how 
different factors are important in different counties. For ease of interpretation the simple % correct is used here. 

 TOTAL DELAWARE GREENE SCHOHARIE SULLIVAN ULSTER 

Distance from Urban Areas 90.80 90.70 90.97 91.64 90.55 90.80 

Elevation 90.75 90.68 90.79 91.67 90.50 90.78 

Slope 90.72 90.70 90.77 91.53 90.48 90.72 

Distance from Local Roads 90.71 90.64 90.78 91.53 90.49 90.73 

Distance from Secondary Roads 90.69 90.58 90.85 91.64 90.48 90.68 

Population Density 90.69 90.61 90.80 91.48 90.42 90.73 

Distance from State Owned Lands 90.68 90.49 90.72 91.64 90.58 90.71 

Distance from Primary Roads 90.67 90.50 90.72 91.38 90.56 90.75 

Distance from Hydrological Features 90.65 90.62 90.77 91.56 90.37 90.62 

Aspect 90.65 90.43 90.80 91.59 90.50 90.69 

Distance from Water 90.65 90.50 90.83 91.48 90.43 90.68 

Basins 90.63 90.55 90.75 91.37 90.39 90.67 

Distance from Route 28 90.63 90.43 90.70 91.54 90.59 90.62 

Population over age 65 90.65 90.53 90.76 91.45 90.45 90.69 

Distance from NYC 90.61 90.61 90.64 91.43 90.35 90.62 

Distance from Ski Resorts 90.61 90.49 90.65 91.45 90.46 90.62 

Owner Occupied Housing 90.60 90.43 90.70 91.46 90.43 90.66 

Distance from Agricultural Lands 90.59 90.40 90.70 91.46 90.40 90.68 

       

       

1ST       

2ND       

3RD       

4TH       

5TH       

Table 6: Although the first five drivers on the left provided the highest predictive power
for the region as a whole, this table illustrates how different factors are important in
different counties. For ease of interpretation the simple % correct is used here.
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Figure 15a. Forest Fragmentation
‘Potentiality’ or ‘Risk’ Map calculated for
each of the five Catskill-Delaware Counties
included in the analysis. This map illustrates
those areas within each county most and least
likely to be developed based on which land
has been the most desirable for development
in the past.

Figure 15b. Forest Fragmentation
‘Potentiality’ or ‘Risk’ Map for the Catskill-
Delaware Region. In this map forested areas
are categorized from high to low risk of
development based on past regional patterns.
Areas in red are those under greatest pressure
for future development compared to other
areas across the entire region.
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2001

2011

Figure 16. Catskill-Delaware forest fragmentation projections from 2001 (existing) to 2011.  Green is forest,
white non-forest, brown state- and city-owned lands, and blue water.

yale university’s global institute of sustainable forestry
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Figure 17(a). Forestlands per county
1992 - 2011. Empirical and linearly
projected forest cover in the portion
of the five counties included in the
Catskill-Delaware study. Excludes
public lands owned by the NY State
DEC and NYC DEP and reforesting
lands at 1992-2001 rate. 
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Figure 18. Catskill-Delaware Forest Area Projections per NYC Water Supply Watershed 
2001 - 2011

Figure 18. Catskill-Delaware forest area projections per NYC Water
Supply Watershed 2001 - 2011.

Figure 17(b). Forestlands per county
1992 - 2011. Empirical and 
linearly projected forest cover in the
portion of the five counties included
in the Catskill-Delaware study.
Includes public lands owned by the
NY State DEC and NYC DEP and
lands reforesting at 1992-2001 rate.
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Results—Thames Watershed

Empirical Rate of Forestland Loss and Apparent Causes

The Thames Watershed is part of the New England landscape, which has gone through tremendous changes
in the past two centuries. From a completely forested wilderness in the 17th century, it was substantially
cleared for farming by the mid-1800s. Then, as farms on these rocky soils were abandoned, much of the
land grew back to a central hardwood forest. Dairy farming remained for much longer, but by the late 20th

century, even that was mostly gone, with former pastures converted to housing developments with names like
“Orchard Lane.” Thus, the forests changed from being patches in a landscape of agriculture and industry in
the mid-1800s to being the predominant landscape feature in the late 20th century.

Now, it seems as if the trends are reversing, with more and more forestland being cleared for development
(table 9). In 1985 the land in our study area was 79% forested—by 2002 it had declined to 74%. Private
lands not protected from development dropped from being 74% forested in 1985 to 69% forested in 2002.
This loss of forest is not evenly distributed, but exhibits a pattern of distinct fragmentation. Some towns
remain virtually unchanged in forest cover, while others have lost 10–12 % of their forest. Considering only the
land that is available for development, that is, excluding forestland permanently protected by government
ownership or conservation easement, then the situation is even more dramatic. Fifteen towns have lost more
than 10% of their unprotected forestland in the past seventeen years.

16

New housing development is clearly a factor in the changing landscape. Many towns in the study area are
expanding residential development at a scale of 2 to 3 new houses per square mile each year (see appendix D).
 
 

Total Acres in Area of Analysis 2002       1,195,138  

Acres Included in Analysis (land not permanently 
protected from development) 2002         993,183  

Acres in Water 2002           45,943  

Acres in Conservation Lands 2002         156,001  

% Area in Water 2002        4% 

% Area in Conservation Land 2002       13% 

1985         940,702  Total Acres of Forest  
2002         887,973  

1985       79% 
%  Forested 

2002       74% 

 Forest Cover (Excluding Conservation Lands)     

Actual (acres) 1985         738,747  

Actual (acres) 2002         683,970  

2008         665,747  

2013         650,561  

2018         635,375  
Projected (acres) 

2023         620,189  

% Loss 1985 - 2002         7% 

by 2013       5% 
% of 2002 Unprotected forest at risk 

by 2023       9% 
 
Table 8. Thames Watershed 2002 Land Cover and Projected Changes through 2023  Table 9: Thames Watershed 2002 land cover and projected changes through 2023.
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Median housing prices, after declining in the mid-1990s, are on the rise again. Employment in the area, on the
other hand, has remained relatively flat since 1990, indicating that new residents are likely commuting to urban
areas for employment. Overall population has also remained fairly flat, so the expansion in housing means
smaller households, in line with national trends. The population dynamics of the area are not easy to interpret,
however, as many towns are losing population and many others gaining. For the most part, the smaller towns
(under 15,000) are growing, while the larger towns (over 15,000) are losing people (figure 19). The town of
Eastford, for example, with a population of 1,350 in 1990, gained 280 residents in the following ten years, a
21% increase. Three hundred or so new people in a small town can be a big drain on local resources. 

We plotted the decline in forest cover since 1985 and fit two trend curves to the data set (figure 20). The best
projection of loss of forestland over the next 20 years is probably somewhere between the conservative third
order polynomial trend line that predicts a leveling off at around 680,000 acres, a loss of only 6,000 acres, and
the more aggressive linear trend that predicts a loss of 60,000 plus acres. Nevertheless, for our projections we
used the higher quantity of forest loss predicted by the linear trend since polynomial curves, given their inherent
nature, are often reliable for only a small portion of a data set, and less reliable over a longer period of time. 

Our analysis revealed that the highest loss of forest cover occurred in three Massachusetts towns, Webster,
Oxford and Spencer, and the Connecticut towns of Vernon and Norwich (table 10). Interestingly, six of the ten
towns with the highest rates of forest loss are also among the top ten towns with the least forest cover. This
apparent relationship between total area developed and the on-going rate of forest loss coincides with our
findings that the lands most vulnerable to deforestation are those neighboring already developed lands (see
below). In contrast, five of ten towns experiencing the least forest loss since 1985 are among the ten towns
with the highest percent forest cover.
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Figure 19. Population changes 1990–2000 for 59 towns in Thames Watershed study area.
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Figure 20. Analysis of 1985–2002 Thames Watershed forest cover and projection of trends
to 2023.

Towns with top 
rate of forest loss 
1985-2002 

State 

% loss of 
unprotected 

forest       
1985 - 2002  

Towns with least 
rate of forest loss 
1985-2002 

State 

% loss of 
unprotected 

forest        
1985 - 2002 

Webster MA 17  Union CT 2 

Oxford MA 15  Holland MA 3 

Spencer MA 13  Ashford CT 3 

Vernon CT 13  Eastford CT 4 

Norwich CT 13  Woodstock CT 4 

Plainfield CT 12  Hampton CT 4 

Putnam CT 12  Wales MA 5 

Leicester MA 12  Scotland CT 5 

Windham CT 12  Pomfret CT 5 

Charlton MA 12  East Haddam CT 5 

       

10 least forested 
towns in 2002 

 % Forest 
Cover 2002  

10 most forested 
towns in 2002 

  % Forest 
Cover 2002 

Vernon CT 47  Union CT 91 

Somers CT 51  Wales MA 91 

Ellington CT 52  Voluntown CT 89 

Norwich CT 53  Holland MA 86 

Windham CT 60  Chaplin CT 85 

Webster MA 64  Eastford CT 84 

Putnam CT 65  Stafford CT 84 

Lebanon CT 65  Sturbridge MA 84 

Plainfield CT 65  Brookfield MA 84 

Bolton CT 66  Ashford CT 83 

Table 10: Thames Watershed towns with highest and lowest rate of forest loss (as a % of unprotected 
forestland) and highest and lowest forest cover (as a % total land area).



Pattern of Forestland Loss, the Empirically-Important Factors and Their
Ability to Predict the Future Location of Development

In the Thames Watershed study we analyzed 34 different factors (table 11). We compared the simulated
2002 results using the “vulnerability” map for each factor, to the actual 2002 land use map.  The “goodness
of fit” between the simulated map and the actual map is indicated by the kappa statistic, which measures
how much better than chance alone the model is in predicting areas that will be converted from forest to
non-forest (with “0” being no better than chance alone and “1” being a perfect predictor). 

The highest kappa, hence the best prediction of the pattern of land use change, was obtained using the
combination of three factors: distance to 1985 agricultural land; soils; and distance to 1985 developed land,
with the region stratified by town (table 12). This last factor can be construed to match distance from
“urban” areas in the New York study. We found that using all of the top eleven factors actually slightly
reduced the model’s ability to match the 2002 landscape. More information does not, therefore, necessarily
aid in landscape unit (cell by cell) selection precision. The top three factors were used for future land use
change projections post-2002, but were updated to reflect distance from 1990 agricultural and developed
areas. 

Nonetheless, the kappa statistics are quite close for all factors, indicating the interdependence of topography,
roads, population, and urban development. Using these factors in combination in the GEOMOD process has
given us great predictive power to project the pattern of future land development. 
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Rank 

 
Combination 
 

Strata 
 

% Correct
 

Klocation 
 

1 Distance from '85 Agriculture, Soil Type, Distance from ‘85 
Developed 

By 
Town 

94.94 0.8987 

2 Distance from '85 Agriculture, Soil Type, Distance from ‘85 
Developed 

Entire 
Region

94.91 0.8983 

3 Distance from '85 Agriculture, Soil Type, Distance from ‘85 
Developed, Population over age 65, Density of Housing 
Units 

By 
Town 

94.83 0.8966 

4 Distance from '85 Agriculture, Soil Type, Distance from ‘85 
Developed, Population over age 65, 

Entire 
Region

94.79 0.8958 

5 Distance from '85 Agriculture, Soil Type Entire 
Region

94.75 0.8949 

6 11 top factors Entire 
Region

94.46 0.8891 

 
Table 11. Combined Predictive Power of 2002 land use using 1985 and 1990 information 
 
 

Table 12: Combined predictive power of 2002 land use using 1985 and 1990 information.

Validation Statistics for Connecticut Spatial Drivers; Time 1 = 1990, Time 2 = 2002 
 

Rank Factor Kappa for location   

1 Distance from 1985 Agricultural Lands 0.8928  

2 Soil type 0.8881  

3 Distance from 1985 Urban Areas 0.8859  

3 Population Over Age 65 (1990) 0.8859  

4 Density of Housing Units (1990) 0.8858  

5 Population Density (1990 Census) 0.8855  

5 Distance to Secondary Roads 0.8855  

6 Owner Occupied Housing Units (1990) 0.8850  

7 Population Under Age 18 (1990) 0.8849  

7 Distance to Railroads 0.8849  

8 Elevation 0.8846  

9 Distance to Major Rivers 0.8843  

10 Distance to Local Roads 0.8840  

11 Distance to Primary Roads 0.8839  

12 Number of Home Sales (1990) 0.8830  

13 Unemployment Rate (1990) 0.8828  

13 Distance to Local Roads 0.8828  

14 Town polygons 0.8826  

14 Single Family Housing Permits (1990) 0.8826  

14 Labor Force - Construction 0.8826  

14 # House Building Permits 0.8826  

15 Labor Force - Service Industry 0.8823  

16 Labor Force 1990 0.8821  

17 Mean Value Owner Occupied Housing Units (1990) 0.8817  

18 Median Home Sales Price (1990) 0.8816  

19 Distance to Primary Roads 0.8815  

20 Distance to Power Lines 0.8810  

20 Distance to Pipe Line 0.8810  

20 Slope 0.8810  

21 Aspect 0.8807  

22 Distance to Rivers/Lakes 0.8802  

23 Distance to Casinos 0.8801  

 
Table 11: Validation results for 34 spatially distributed factors tested in the Thames Watershed study.



Future Projections

The forest fragmentation potentiality or "development risk" map for the Thames watershed, based on the three
most highly predictive factors, is reclassed for visualization purposes to show those areas most likely to be
developed in the next 10 to 30 years (Figure 21(a)).  This map shows which areas in each town are most
vulnerable to development, based on distance to 1990 agricultural land, soils, and distance to 1990 developed
land. Weights were developed based on the amount of development that has already occurred within each
county on land with similar characteristics relative to these three factors. The factors used are those that
together yielded the best "goodness of fit" between the simulated and the real 2001 map for each town.

Figure 21(b), shown for comparison’s sake, illustrates which towns or areas of the watershed are more at risk
than others when the region is analyzed without stratification by towns.  The weights are derived from the
amount of land across the entire area already developed in 2001 with similar characteristics relative to the
top three drivers. We projected the future scenario for changes in land cover in the Thames Watershed (figure
22), selecting for non-forest use those cells most vulnerable for change within each town. (figure 21a), since
we had received a higher kappa using stratification by town.

The most dramatic changes will occur in the Massachusetts towns of Webster, Oxford and Spencer, which by
year 2012 could lose  an additional 10.5 %, 9.1 %, and 8.5 % respectively of their 2002 forest not currently
protected from development, and twice that by 2022. These are followed by the Connecticut towns of
Vernon, Norwich and Plainfield, already some of the least forested towns in the study area (tables 10 and
Appendix D). 

In the Thames Watershed, forest fragmentation has increased from 1985 to 2002.  Using a simple measure
over the entire study area of ‘area of intact forest’ vs. ‘perimeter of forest patches,’ the area:perimeter ratio was
421:1 in 1985, dropping to 381:1 in 2002. Forest patches are getting smaller, with more edge environment,
which has implications for wildlife, invasive species, and water quality. However, our projections out to 2022
indicate that the future trend may result in a loss of the smaller forest fragments which results in a higher
area:perimeter ratio.  This ratio change could deceptively be interpreted to mean elimination of forest
fragmentation, and consolidation of forest patches.  Rather, inspection of the maps shows an infilling of
developed areas by elimination of smaller forest fragments. This mathematically changes the area:perimeter
ratio of the remaining forest, but does not mean there will be a consolidation of forest patches. 
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Figure 21a. Forest Fragmentation “Potentiality” or
“Risk” Map calculated for each of the 59 towns in the
Thames region of analysis. This map illustrates those
areas within each town most and least likely to be
developed based on which land within each town has
been the most desirable for development in the past.

Figure 21b. Forest Fragmentation “Potentiality” or
“Risk” Map for the Thames region. In this map
forested areas are categorized from high to low risk of
development based on past regional patterns.  Areas
in red are those under greatest pressure for future
development compared to other areas across the
entire region.
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Figure 22. Thames Watershed forest fragmentation projections 2002 (existing) to 2022.  Green represents forest
(including conservation lands); yellow nonforest; and black water. 



Conclusions 
n The Catskill/Delaware region of New York and the Thames Watershed region of Connecticut and
Massachusetts are losing forestland, and this trend will likely continue.

n Forests in the Catskill/Delaware region are increasingly fragmented, and this trend will likely continue.  In the
Thames Watershed, forest fragmentation has increased from 1985 to 2002, however, our projections out to
2022 indicate that the trend might be a loss of the smaller forest fragments which results in a higher
area:perimeter ratio.  This ratio change could deceptively be interpreted to mean elimination of forest
fragmentation, and consolidation of forest patches.  Rather, inspection of the maps shows an infilling of
developed areas by elimination of smaller forest patches. This mathematically changes the area:perimeter ratio
of the remaining forest, but does not mean there will be a consolidation of forest patches. The pattern of
development in the Thames is less dispersed than that observed in the Catskills perhaps due to the fact that
there is less private land available for development, or because of the type of development taking place.

n Ownerships are getting smaller (parcelization) in the Catskill/Delaware region and land that has been divided
since 1984 is 1.5 times more likely to be fragmented than land that has not been parcelized during the past
twenty years.  

n As indicated by the discussions at the community workshops (Appendix A), local people know that their
forests are becoming more fragmented and the rural character of their towns is changing, and they are asking
for tools to help educate communities about the problems with growth and development in largely rural,
forested areas.

n GEOMOD is a very useful tool for projecting future change in these areas and for helping communities visualize
the impacts of seemingly innocuous, dispersed development in rural, forested areas. 

n We are now able to identify where the highest risk seems to be of future forest fragmentation and loss within
each area and within each county or town—a real benefit to conservation efforts.

n Already developed areas are nodes for expanded development. Towns with the least forest cover are losing
the forest they have faster than towns that are mostly forested. Driving factors and indicators of development
in the northeast are highly interdependent, thus no single one stands out as more highly predictive than others.

n Socio-economic data, although useful in understanding the demographic trends in an area, did not provide
better predictive power than just bio-physical (topography) and socio-political (development and roads) factors
alone. This is good news for broad application of GEOMOD in the northeast, because of all the factors we
analyzed, the socio-economic data were the most time consuming to collect and format for the model.

n Based on the high kappa-for-location numbers that we achieved it appears that the predictive power of
GEOMOD is much higher in the northeastern USA than in several of its applications in the tropics at the
same scale, where it has been previously tested.

17
This is probably due to the advanced state of GIS data

availability in the USA, but perhaps more importantly due to the higher resolution (level of information) of
the publicly-available map inputs we employed, rather than the types of mapped data we tested. In the
end biophysical factors and infrastructure remained the most powerful indicators of future settlement pattern,
much as we and others, have found in the tropics.

18
Many of the other socio/demographic/economic factors we
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tested are probably co-dependent with these underlying factors. Even roads and towns are usually sited
according to topographical factors, and historically navigable waterways. The imprint of the past is still very
strong in both these regions. It follows that the population factors produced nearly equivalent kappas due to
the fact that where there is development there are people, and where there is no “developed” landscape
people are absent. This means that the model, having analyzed the percentage of cells in the map where, for
example, the population density is high, will then look for those cells to “deforest,” but in fact they are probably
already in the non-forest class. Looking for flat land or western exposure is much easier, and there should be
more variation in the selection and hence “goodness of fit” between factors. We would like to apply the model
to one more northeastern location in order to make final recommendations about the best data sets for communities
of the NE to use to project the business as usual landscape.

Recommendations 

Ultimately, this research will be most widely applicable if the analytical tools and methods developed and
tested in the study sites can be used by municipal, regional, county and conservation planners throughout
the northeast. Our first job as researchers is to test the power of the tools. Having done that, our goal now is
to put that power in the hands of the folks who are making the day-to-day decisions about land use planning.
Once these local interest groups can analyze the land use change dynamics in their communities, they can
project how these changes may affect the future of their landscape, their tax base and infrastructure
demands, or critical areas of concern such as water quality, air quality, traffic, wildlife habitat, and recreation
areas, and incorporate that knowledge into their policy and planning efforts. 

Feedback from the community workshops indicates that this information would be extremely useful in the
town, county and regional planning processes. We suggest, based on these discussions, that we create a CD
in which the results of our research would be organized and presented in a way that would be easy for each
town or county to “click” and see the local dynamics in their town and the surrounding area. This CD would
be developed in collaboration with three or four “pilot” towns to fully utilize the information about forestland
change and trends in socio-economic factors resulting from the analysis in a way that would be compelling
and useful for the people and organizations whose every-day decisions affect land use change at the local scale. 

To assure the predictive capability and overall usefulness of the model throughout the northeast, we recommend
a third study site to increase our ability to test for commonalities of pattern and drivers of forestland change
in the region. This will enhance our ability to indicate the broader implications about trends in land use
change based on the trends detected in this study, and to guide communities in application of this model to
their particular area. We found that in both the Catskill/Delaware and the Thames sites, the best predictors of
the pattern of forest fragmentation were bio-physical and socio-political factors such as distance from previous
development and roads. If this holds true in a third site, then it would be relatively simpler and less expensive
to apply the model broadly in the northeast. Thus, in order to expand the potential for using GEOMOD as a
land use planning tool, we recommend the following:

n Create a web-based workbook for using GEOMOD in the northeast including: types of data sets that are useful
in predicting land use change and are widely available in standard formats; how to organize and format
the data; how to run the model and interpret the results; and use of visualization tools for presentation of
the model results.
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n Adapt GEOMOD to run in ArcGIS. Currently GEOMOD is available in the IDRISI tool suite, however, ArcGIS is
the most commonly used GIS tool by government and conservation organizations. Having an ArcGIS version
of GEOMOD would make it much more likely that planning groups can use this tool. 

n Create a web site for modeling and understanding land use change in the northeast featuring results of this
research with emphasis on visualization tools and maps, annotated bibliographies of forest fragmentation
literature, and resources for forest-focused land use planning tools for the northeast.

1 Forest ownership numbers are extrapolated from the draft 2002 National Woodland Owner Survey (Butler and Leatherberry forthcoming).

2 USDA Natural Resources Conservation Service 1997.

3 Commonwealth Research Group 1995; Resource Systems Group 1999.

4 Hall et al 1995a and 1995b.

5 Hall et al. 2000.

6 Pontius 2000.

7 Hall et al 1995a and 1995b; Pontius et al. 2001; Hall and Dushku 2002.

8 Pontius and Schneider 2001, Schneider and Pontius 2001.

9 We wish to acknowledge the following agencies for much of the information found here: The Catskill.com website

(www.catskillpark.com/catskills.html); The New York State Department of Environmental Conservation

(www.dec.state.ny.us/website/dlf/publands/cats/); and The Catskill Center for Conservation and Development (www.catskillcenter.org).

10 We wish to acknowledge the Connecticut Chapter of the Nature Conservancy 

(http://nature.org/wherewework/northamerica/states/connecticut/) and the Quinebaug-Shetucket Heritage Corridor, Inc. 

(http://www.thelastgreenvalley.org/) for much of the information found here. 

11 A description of the methods used for classification and post-classification assessment are found in Appendix B.

12 For details on the accuracy assessment, refer to Appendix B.

13 More information about the Connecticut Statewide Temporal Land Cover and Land Cover Change Project is available at

www.clear.uconn.edu. 

14 Accuracy assessment for the Thames area is being done as part of the Connecticut state-wide land cover analysis project, and was

not yet completed at the time of publication of this report. 

15 LaPierre and Germain 2003. 

16 See Appendix D for details on forest cover and forest loss by town.

17 Hall and Dushku 2002; Dushku, Brown and Hall 2002. 

18 For a review see Chomitz and Gray 1996; Lambin 1997; and Kaimowitz and Angelsen 1998.
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Appendix A:  Community Workshops
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Participants at Thames Watershed Community Workshops

Michael Altshul Green Valley Institute
Dick Booth Wyndham Land Trust
Fred Borman CT DEP - Division of Forestry
Steve Broderick UCONN Extension Forestry
Mark Buccowich USDA Forest Service State and Private, Cooperative Forestry
Dan Civco UCONN Laboratory for Earth Resources Information Systems
Ruth Cutler Green Valley Institute
Dan Donahue Norcross Wildlife Foundation
Phillip Elliott Eastern Connecticut State University
Doug Emmerthal CT Division of Forestry
Delia Fey Town of Killingly
John Filchak NE CT Council of Governments
Carl Fontneau Towns of Columbia and Scotland 
Kristin Foord Massachusetts Executive Office of Environmental Affairs
Ken Goldsmith Woodstock Conservation Commission
Reanna Goodreau Town of Ellington Planning Department
Scott Gravatt Eastern CT Conservation District
Myrna Hall SUNY College of Environmental Science and Forestry
Brian Holdt UCONN NRME
James Hurd UCONN Laboratory for Earth Resources Information Systems
Steve Klemchuk
Sara Laughlin Town of Thompson
Tom Luther Northeastern Area, State & Private Forestry
Carrie Magee Yale School of Forestry and Environmental Studies
Andy McLeod The Trust for Public Land
Karen Mollander Durham Field Office, NA State &Private Forestry
Roger Monthey USDA Forest Service
Susan Nixson SUNY College of Environmental Science and Forestry
Jim Parda CT Division of Forestry
Elizabeth Petruska Yale School of Forestry & Environmental Studies
Neil Sampson Yale School of Forestry & Environmental Studies/The Sampson Group
Art Talmage Conwood Foresters/Connecticut Tree Farm
Eric Thomas Department of Environmental Protection
Bill Toomey The Nature Conservancy
Eric Trott Coventry Town Planner
Mary Tyrrell Yale School of Forestry & Environmental Studies 
Edwin Vonderheide Woodstock Conservation Commission
Susan Westa Green Valley Institute
Paul Wilbur Woodstock Conservation Commission
Emily Hoffhine Wilson NEMO Project, Cooperative Extension, UCONN
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Participants at Catskill/Delaware Watersheds Community Workshops

Anne Altshuler Olive Natural Heritage Society
Aaron Bennett The Catskill Center
Page Bertelsen Yale School of Forestry & Environmental Studies
Tim Cox Corporate Counsel Catskill Watershed Corporation
Michelle Decker SUNY College of Environmental Science and Forestry
Steve Dettman Yale School of Forestry & Environmental Studies
Brian Fisher Watershed Agricultural Council
René Germain SUNY College of Environmental Science and Forestry
Nat Gillespe The Nature Conservancy
Myrna Hall SUNY College of Environmental Science and Forestry
Henry Kernan Forest Landowner
Maureen Krudner U.S. Environmental Protection Agency
Jack McShane Catskill Landowners Association
Jean Millar Roxbury Planning Committee
Ken Neavey Catskill Watershed Corporation
Christopher Olney     The Catskill Center for Conservation and Development
Jim Porter New York City Department of Environmental Protection
John Potter New York City Department of Environmental Protection
Neil Sampson Yale School of Forestry & Environmental Studies/The Sampson Group
Matthew Schwab New York City DEP
Michael Shaw U.S. Environmental Protection Agency, NYC Watershed
Kate Schmidt Cornell Cooperative Extension, Sullivan County
Mary Tyrrell Yale School of Forestry & Environmental Studies
Rick Wyman Edmund Niles Huyck Preserve and Biological Station
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FOREST FRAGMENTATION/LAND USE CHANGE MODELING PROJECT

Yale School of Forestry and Environmental Studies, Global Institute of Sustainable Forestry 
and State University of New York College of Environmental Science and Forestry

THAMES SITE WORKSHOP

Brooklyn, Connecticut
May 21, 2002

AGENDA

Welcome and Introduction — Mary Tyrrell and Steve Broderick

TNC Quinnebaug Highlands Project — Bill Toomey

Project Overview — Neil Sampson

Comments and Feedback

GEOMOD Demonstration — Myrna Hall

Comments and Feedback

Hypothesis Formulation

ATTENDEES

Myrna Hall, SUNY ESF
Neil Sampson, The Sampson Group and Yale FES
Mary Tyrrell, Yale FES
Carrie Magee, Yale FES
Susan Nixson, SUNY ESF

Steve Broderick, University of Connecticut Extension Forestry
Bill Toomey, The Nature Conservancy, Connecticut Chapter
Phillip Elliott, Eastern Connecticut State University
Dick Booth, Wyndham Land Trust
Art Talmadge, Conwood Foresters/ CT Tree Farm
Delia Putnam, Town of Killingly
Ruth Cutler, Green Valley Institute
Paul Wilbur, Woodstock Conservation Commission
Dan Donahue, Norcross Wildlife Foundation
Andy McLeod, Trust for Public Land
James Hurd, University of Connecticut

SUMMARY OF COMMENTS AND FEEDBACK

Concerns, trends and perceived threats to the forests 

n Most of the land is still forested and population fairly low
n Fragmentation, habitat destruction and conversion are the biggest threats
n No longer much forestry work of any significance
n Timber markets are narrowing down
n Parcelization is obvious
n Cheapest land in Connecticut and less than one hour from four major cities
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n Local planning and zoning people do not necessarily distinguish between rural character and working land
n Need for public education
n Collapse of the dairy industry leading to development on ag lands
n Paper subdivisions legacy from the 1980s development boom
n Perceived drivers of forest loss and fragmentation
n Population growth
n Zoning (towns without zoning regulations; towns with “10-acre lot” type of zoning)
n Forests are not able to generate revenue due to narrowing of timber market
n Parcelization
n Casino development (pressure from the south)
n Threat of new casino development in the Q/S area
n Pinching of suburban areas leading to migration from suburbs to rural areas
n Land prices
n New houses; large homesteads 
n Distance from major cities (Providence, Hartford, Worcester, New London)
n DOT investment in road improvement and expansion

HYPOTHESES

Parcelization is occurring and will eventually lead to forest fragmentation and loss.

Forestland change is driven by population growth, zoning regulations, narrowing of timber markets, casino
development, land prices, distance from major cities, and DOT investment in road improvements and new
roads.

FINAL NOTES

The general sense was that this project has a lot to contribute to the forest conservation efforts in the area.
Attendees expressed a lot of interest and willingness to work with the project team on many aspects of the
research. Feedback was that this can be a tremendous educational tool; this type of time series projection is
needed and will be very useful. 

It was strongly suggested (requested) that the team include the Massachusetts portion of the
Quinnebaug/Shetucket Heritage Corridor in the analysis. Many groups are working throughout the entire cor-
ridor and have worked hard to go beyond the political boundaries. The team agreed to consider the request,
depending on whether or not UCONN can include that portion of Massachusetts in their land cover classifi-
cation work being done for the project.

There was some amount of discussion of a sub-project to look at parcelization in the Corridor. This would be
a very useful addition and some work has already been done to digitize tax maps in many towns. (Note: This
would require additional funding.) 
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FOREST FRAGMENTATION/LAND USE CHANGE MODELING PROJECT

Yale School of Forestry and Environmental Studies, Global Institute of Sustainable Forestry 
and State University of New York College of Environmental Science and Forestry

THAMES SITE RESULTS WORKSHOP

Brooklyn, Connecticut
November 24, 2003

AGENDA

Welcome and Introduction — Mary Tyrrell 

Project Overview — Mary Tyrrell

Results: Land Use Changes in the Thames Watershed 1985 - 2002 — Myrna Hall

Next Steps: Phase II of Research Project — Mary Tyrrell

Questions, Comments, Feedback

Lunch Discussion: Putting land use change information and model results to good use

ATTENDEES

Myrna Hall SUNY College of Environmental Science and Forestry
Mary Tyrrell Yale School of Forestry and Environmental Studies
Elizabeth Petruska Yale School of Forestry & Environmental Studies

Michael Altshul Green Valley Institute
Fred Borman CT DEP - Division of Forestry
Steve Broderick UCONN Extension Forestry
Mark Buccowich USDA Forest Service State and Private, Cooperative Forestry
Dan Civco UCONN Laboratory for Earth Resources Information Systems
Ruth Cutler Green Valley Institute
Doug Emmerthal CT Division of Forestry
Delia Fey Town of Killingly
John Filchak NE CT Council of Governments
Carl Fontneau Towns of Columbia and Scotland 
Kristin Foord Massachusetts Executive Office of Environmental Affairs
Ken Goldsmith Woodstock Conservation Commission
Reanna Goodreau Town of Ellington Planning Department
Scott Gravatt Eastern CT Conservation District
Brian Holdt UCONN NRME
James Hurd UCONN Laboratory for Earth Resources Information Systems
Steve Klemchuk
Sara Laughlin Town of Thompson
Tom Luther Northeastern Area, State & Private Forestry
Karen Mollander Durham Field Office, NA State &Private Forestry
Roger Monthey USDA Forest Service
Jim Parda CT Division of Forestry
Eric Thomas Department of Environmental Protection
Bill Toomey The Nature Conservancy
Eric Trott Coventry Town Planner
Edwin Vonderheide Woodstock Conservation Commission
Susan Westa Green Valley Institute
Emily Hoffhine Wilson NEMO Project, Cooperative Extension, UCONN
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SUMMARY OF COMMENTS AND FEEDBACK

Map Accuracy

n The agricultural class includes a lot of non-forested grasslands that could be associated with urban develop-
ment; some residential development could be classified as “agricultural.”

n The 1985/1990/1995/2002 land cover time series developed by CLEAR at UCONN is a unique resource and
technically very reliable. 

Factors Driving Loss of Forest: What else could be considered?

n Transportation networks: the three Massachusetts towns with little development are “protected” because
they are located where there is no exit on the Massachusetts Turnpike for 30 miles.

n Commuting patterns and job vs. home location are hugely important for showing where and why develop-
ment is occurring.

n Age of landowners and parcel size. Parcelization is important in this area. There was a lot of “paper” subdi-
vision in the 1990s—land that was subdivided, but not developed. Development could happen very rapidly
in these places.

n Absentee landownership is a factor.
n Does the amount of land permanently protected from development in a town have any effect on the amount
of other land that is developed? 

n The number of households seems to be more important than population.

Potential Uses of Research Results

n Towns would like to run the model with more refined, localized data; tweak the model and add additional
layers (such as digital parcel maps).

n Useful for identifying lands at risk, which can be incorporated into planning efforts, particularly in conjunc-
tion with identifying lands critical for natural resource values.

n Good way to visualize the phenomenon of development generally following roads—as more roads get built,
there is more development.

FINAL NOTES

Overall, feedback on the usefulness of the research was very enthusiastic, and there was a great deal of
interest in getting the information and tools to the people who would bring it back to their communities.
Eleven folks volunteered to meet with the project team to discuss and work on how to get this out to towns
and into a regional planning process. There was some discussion about the need to make it easy for non-
technical folks to understand, which would be considered in the process.
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FOREST FRAGMENTATION/LAND USE CHANGE MODELING PROJECT

Yale School of Forestry and Environmental Studies, Global Institute of Sustainable Forestry 
and State University of New York College of Environmental Science and Forestry

CATSKILL/DELAWARE SITE WORKSHOP

Liberty, New York
March 19, 2002

AGENDA

Welcome and Introduction — Mary Tyrrell and Rene Germain

Project Overview — Neil Sampson

Comments and Feedback

GEOMOD Demonstration — Myrna Hall

Comments and Feedback

Hypothesis Formulation

ATTENDEES

Rene Germain, SUNY ESF
Myrna Hall, SUNY ESF
Neil Sampson, The Sampson Group and Yale FES
Mary Tyrrell, Yale FES
Steve Dettman, Yale FES
Michelle Decker, SUNY ESF

Henry Kernan, Forest Landowner
Maureen Krudner, U.S. EPA
Michael Shaw, U.S. EPA
Jack McShane, Catskill Landowners Association
Chris Olney, The Catskill Center
Aaron Bennett, The Catskill Center
Ken Neavey, Catskill Watershed Corporation
Brian Fisher, Watershed Agricultural Council
Anne Altshuler, Olive Natural Heritage Society
Matthew Schwab, New York City DEP

SUMMARY OF COMMENTS AND FEEDBACK

Concerns, trends and perceived threats to the forests 

n Consideration of biodiversity and natural history in managing forests
n Need for consulting foresters to consider landscape scale
n High-graded forests
n Difficulty of reaching out to small landowners
n Lack of interest in timber (landowners); people own forestland for reasons other than growing and selling
timber

n Affordability of the land over time
n A lot of land is not in the economic cycle
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n Small, micro-land management is not financially feasible
n No market for lower quality materials
n Inability to manage the land, thus the forest is not a viable asset
n No system for NYC water consumers to pay for private landowners to maintain their forests
n NYC DEP has a priority land acquisition list
n A shift from commodity to non-commodity values
n Image of foresters
n Water quality problems—phosphorous and turbidity
n Degraded streams

Perceived drivers of forest loss and fragmentation

n Taxes
n Loss of pulpwood market
n Decline in number of timber processors; concentration towards bigger and bigger mills
n Large lot development
n Highest development along roads and water
n Second home development (Permanent vs. temporary residents)
n Parcelization
n Lack of education for homeowners, planning boards, zoning boards
n Lack of financial incentives for small landowners
n Lack of incentives for forest management
n Resort development (Bel Air) and consequent secondary development
n Regulation (NYC watershed)
n Distance to NYC and major thoroughfares (Thruway, Rt 17, Rt 28)
n Commuting distance
n Ski areas as growth nodes
n Topography
n Age of land owners
n Demand for new houses

HYPOTHESES

Parcelization is more of a current factor than fragmentation and will be hard to detect or predict.

Forestland change is driven by distance from NYC, distance from major roads, distance from growth nodes
such as ski resorts and new resort development, watershed regulations, taxes, age of landowners, and the
population of permanent residents vs. housing units (i.e. second home development).

FINAL NOTES

The type of change that the area is experiencing may not be visible on satellite imagery, thus the feeling of
some of the group was skepticism that this model will add much value to the work that is already being done
in the area. The DEP is developing their own model to look at change in the watershed. The NYC watershed
regulations are a complicating factor—they influence land use change, but will be difficult to account for in
the model. The project team decided on a strategy to look at one township or county where parcelization data
is available and determine if rural residential land use can be detected on satellite imagery. 
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FOREST FRAGMENTATION/LAND USE CHANGE MODELING PROJECT

Yale School of Forestry and Environmental Studies, Global Institute of Sustainable Forestry 
and State University of New York College of Environmental Science and Forestry

CATSKILL/DELAWARE SITE RESULTS WORKSHOP

Liberty, New York
June 9, 2003

AGENDA

Welcome and Introduction — Mary Tyrrell 

Project Overview — Mary Tyrrell

Results: Land Use Changes in the Catskill/Delaware Watersheds 1992 - 2001 — Myrna Hall

Next Steps: Phase II of Research Project — Mary Tyrrell

Questions, Comments, Feedback

Lunch Discussion: Putting land use change information and model results to good use

ATTENDEES

Page Bertelsen, Yale School of Forestry and Environmental Studies
Myrna Hall, SUNY College of Environmental Science and Forestry
Mary Tyrrell, Yale School of Forestry and Environmental Studies

Tim Cox, Corporate Counsel Catskill Watershed Corporation
Nat Gillepse, TNC Neversink Project
Henry Kernan, forest land owner
Jack McShane, forest land owner and Catskill Forest Association
Jean Millar, Roxbury Planning Board
Jim Porter, NYC DEP Watershed Hydrology Program
John Potter, NYC DEP Bureau of Water Supply
Kate Schmidt, Cornell Cooperative Extension, Natural Resource Educator
Mike Shaw, EPA NYC Watershed
Rick Wyman, Intl. Org. of Biological Field Stations

SUMMARY OF COMMENTS AND FEEDBACK

Factors Driving Loss of Forest: What else could be considered? 

A few of the comments were about what folks see as driving change in their towns:

n Second homes and the associated development (tax records show that 80% of the forest parcels within the
study area are owned by non-residents)

n Proposed casinos
n Trend of increased publicity about the rural towns in the area, resulting in increased second home develop-
ment and urban migration

n High land taxes
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Potential Uses of Research Results

n To inform local (town) discussions about the balance of conservation and development
n To tie in with water quality/quantity models to predict water impacts of future development
n Input to local planning tools, especially zoning, to help with the process of planning for development in areas
that are best used for development and conservation of high value foreslands

n Help towns make the connection between the forest and the town in terms of water, economics, etc. Towns
in the area tend to consider forest as “abandoned” or “unproductive” agricultural lands, especially with
regard to tax policies

n Help with the discussion about the value of working forests to the local economy

FINAL NOTES

Overall, feedback on the usefulness of the research was very enthusiastic, with several people indicating that
they could have definitely used our results in their recent town planning efforts. The feeling was that the
unique ability to visualize potential land use change and identify areas at high risk of development, would be
very useful at the local and county level. The towns of Andes, Roxbury, Delhi, and Bel Air, and Sullivan
County were volunteered as places that would be interested in working with the project team to integrate this
project into the local planning process. The EPA was very interested in linking this project to water quality
models for the NYC Watersheds. 
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Appendix B:  Satellite Imagery Classification
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Accuracy Assessment of Year 2001 satellite image classification for the
New York study

This classification followed as close as possible the protocol and standards reported for the 1992 NLDC for
New York. The imagery used came from the Multi-resolution Land Characterization (MRLC) Consortium. All
image preparation including georeferencing was completed by the MRLC prior to this classification. 

The initial Landsat TM mosaics, all ancillary data sets, and the land cover product are all map-registered to
an Albers Conical Equal Area projection. The following represents projection information for the final land
cover product for the state of New York.

Projection: Albers Conical Equal Area
Datum: NAD83
Spheroid: GRS80
Standard Parallels: 29.5 degrees North Latitude     

45.5 degrees North Latitude    
Central Meridian: 96 degrees West Longitude
Origin of the Projection: 23 degrees North Latitude  
False Easting:  0 meters
False Northing: 0 meters

Number of Lines (rows): 17455              
Number of Samples (columns): 23005
Number of Bands: 1  Pixel size: 30 X 30 meters
Projection Coordinates (center of pixel, projection meters)

Upper Left Corner:  1317210 meters(X),
2663820 meters(Y)

Lower Right Corner: 2007330 meters(X),     
2140200 meters(Y) 

NOTE: Each state data set was extracted from the larger regional data set. State boundaries from the USGS
1:100,000 Digital Line Graph (DLG) series were used as the basis for extracting the state data. In many
instances, the precision of the boundaries in the 1:100,000 DLG data does not match the spatial precision of
the Landsat TM data. This is most apparent where state boundaries follow small rivers. To overcome the pos-
sibility of data being lost in the extraction process, a 300 meter (10 pixel) buffer was added to the state
boundary used to extract the state data.

Caveats and Concerns::

As with the previous classification from the NLDC, we believe that the approach taken has yielded a very
good general land cover classification product for a very large region. However, it is important to indicate that
there might be some potential problems. Problem areas are listed below:

1) Unlike the previous classification of this region only one image from May of 2000 was used. The image
acquired from April was predominantly snow covered and so relatively unusable. Therefore there was no leaf
off image to use that is necessary for accurately defining roads and the like that will often become obscured
when the forest cover leafs out. 

2) Like the USGS there were some issues with accurate definition of the transitional barren class. Because
there were very few known positive examples available for this class to use as training sites this class was
omitted. As a result, those true areas of transition were lumped in with row-crops and pasture-hay classes.  
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3) Due to the confusion between clear-cuts, regrowth in clear-cuts, forested areas, and shrublands, no
attempts were made to populate the shrubland classes. Any shrubland areas that exist in this area are
classed in their like forest class, i.e., deciduous shrubland is classed as deciduous forest, etc. 

4) Pasture-hay and Row-crop classes were also quite difficult to distinguish between due in part to the time
of year. These two classes may be somewhat interchangeable in reality. 

5) There were also some issues separating low intensity residential and transportation. In the 1992 classification
transportation is lumped with industrial but in this classification some roads show up as low intensity residential. 

6) Again due to the time of year and lack of a leaf off image the residential classes may be somewhat less
representative than reality. Relatively pure training sites were used for this class and so those regions where
homes are scattered about the landscape with lots of forest cover may have been missed in this classification.    

Accuracy Assessment: 

In accordance with the accuracy assessment completed for the 1992 New York NLDC, 15 land cover and
land use classes were assessed, using 1:40,000-scale Digital Ortho quads as reference data. See methodology
section of New York NLDC for specific details. The overall Kappa statistic for agreement was .74112 with a
confidence interval of +/- 0.0777 at %99. The classes having the highest errors were the woody-wetland and
urban-grass/recreational.  

Misclassification errors seem to be from a number of possible sources. The DOQQ’s used for the assessment
came from 1999 and different months. Some changes appear to have occurred in that time. Also the geo-
referencing for the TM imagery seems to have some problems in the northeast and northwest corners. There
may also be some disagreement due to georeferencing errors between the TM image and the DOQQ’s. See
problems listed in Caveats and Concerns.    

A complete accuracy assessment for this classification may be obtained by contacting Stephen Ambagis at
(508) 353-6430 or sambagis@clarku.edu or sambagis@yahoo.com 

23-Class National Land Cover Data Key

NOTE - All Classes May NOT Be Represented in a specific state data set. 
The class number represents the digital value of the class in the data set.

NLCD Land Cover Classification System Key - Rev. July 20, 1999

Water                    New Classification
11 Open Water 1
12 Perennial Ice/Snow 2

Developed
21 Low Intensity Residential 3
22 High Intensity Residential 4
23 Commercial/Industrial/Transportation5

Barren
31 Bare Rock/Sand/Clay 6
32 Quarries/Strip Mines/Gravel Pits 7
33 Transitional   8

Forested Upland 
41 Deciduous Forest 9
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42 Evergreen Forest 10
43 Mixed Forest 11

Shrubland
51 Shrubland 12

Non-natural Woody
61 Orchards/Vineyards/Other 13

Herbaceous Upland 
71 Grasslands/Herbaceous 14

Herbaceous Planted/Cultivated
81 Pasture/Hay 15
82 Row Crops 16
83 Small Grains 17
84 Fallow 18
85 Urban/Recreational Grasses 19

Wetlands
91 Woody Wetlands 20
92 Emergent Herbaceous Wetlands 21

For a complete description of the classes see the NLCD Land Cover Classification System Land Cover Class
Definitions.
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Accuracy Assessment of Year 1992 NLCD satellite image classification for 
the New York study. 

 

1992 Accuracy Assessment Results 
        

Test Point DOQQ tile Test Point Test Point LU ID# Land Use Class Actual LU Same as 
From 

92samp2   X coord Y coord 
1992 

Landsat 1992 Landsat 1994 DOQQ
92 

Landsat
1 hamd_sw_t3 502302 4665633 9 deciduous forest 9 1 
2 hamd_sw_t2 504915 4665731 9 deciduous forest 9 1 
3 ande_sw_t2 514182 4664699 9 deciduous forest 9 1 
4 ande_se_t3 516636 4663856 11 mixed forest 11 1 
5 marg_se_t3 526663 4664392 11 mixed forest 11 1 
6 hamd_sw_t0 501194 4668833 11 mixed forest 14, 15, or 16   
7 hamd_se_t1 508944 4668803 11 mixed forest 11 1 
8 ande_sw_t3 511629 4666403 15 pasture/hay 15 1 
9 ande_sw_t1 514805 4667228 9 deciduous forest 9 1 
10 marg_sw_t0 520707 4668990 9 deciduous forest 9 1 
11 marg_se_t1 529767 4667960 9 deciduous forest 9 1 
12 hamd_sw_t0 501313 4670154 11 mixed forest 10   
13 hamd_nw_t2 504770 4671203 9 deciduous forest 15   
14 hamd_ne_t3 507565 4670732 11 mixed forest 11 1 
15 ande_nw_t2 514816 4670950 9 deciduous forest 9 1 
16 ande_ne_t2 518149 4670814 3 low intensity residential 3 1 
17 marg_nw_t2 523958 4670684 9 deciduous forest 9 1 
18 marg_nw_t2 525271 4670947 9 deciduous forest 9 1 
19 marg_se_t0 527014 4670562 15 pasture/hay 15 1 
20 marg_se_t1 529915 4670194 9 deciduous forest 9 1 
21 hamd_nw_t1 504890 4674218 11 mixed forest 11 1 
22 ande_nw_t3 512735 4672232 9 deciduous forest 9 1 
23 ande_ne_t3 515568 4673400 9 deciduous forest 9 1 
24 ande_ne_t2 519293 4672959 9 deciduous forest 15   
25 marg_nw_t2 523972 4673454 9 deciduous forest 9 1 
26 marg_nw_t2 524147 4673098 9 deciduous forest 9 1 
27 hamd_nw_t0 502079 4676763 9 deciduous forest 9 1 
28 hamd_ne_t1 509278 4677298 9 deciduous forest 9 1 
29 ande_nw_t1 514169 4675077 9 deciduous forest 11   
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Test Point DOQQ tile Test Point Test Point LU ID# Land Use Class Actual LU Same as 
From 

92samp2   X coord Y coord 
1992 

Landsat 1992 Landsat 1994 DOQQ
92 

Landsat
30 ande_ne_t0 516155 4677275 11 mixed forest 11 1 
31 hoba_sw_t3 520842 4677590 9 deciduous forest 9 1 
32 marg_nw_t1 524532 4675030 11 mixed forest 11 1 
33 marg_ne_t1 528443 4676241 15 pasture/hay 15 1 
34 marg_ne_t1 530329 4677434 11 mixed forest 11 1 
35 marg_nw_t0 523227 4675186 11 mixed forest 11 1 
36 delh_sw_t2 504721 4680355 9 deciduous forest 9 1 
37 delh_se_t3 507051 4680415 9 deciduous forest 4   
38 delh_se_t2 509484 4677986 15 pasture/hay 15 1 
39 bloo_sw_t3 512757 4680052 11 mixed forest 11 1 
40 bloo_se_t3 516276 4678795 9 deciduous forest 15   
41 hoba_se_t2 528866 4680673 9 deciduous forest 9 1 
42 delh_sw_t0 501993 4682219 9 deciduous forest 9 1 
43 delh_sw_t2 504556 4680908 9 deciduous forest 9 1 
44 delh_se_t1 508939 4681809 9 deciduous forest 9 1 
45 bloo_sw_t1 513940 4682777 11 mixed forest 11 1 
46 hoba_sw_t1 523643 4681992 11 mixed forest 11 1 
47 hoba_se_t0 527029 4682860 9 deciduous forest 9 1 
48 hoba_se_t1 530327 4682072 9 deciduous forest 9 1 
49 delh_se_t0 505383 4684060 9 deciduous forest 9 1 
50 delh_ne_t2 509354 4686441 11 mixed forest 11 1 
51 bloo_nw_t3 510385 4685124 11 mixed forest 11 1 
52 bloo_ne_t3 516739 4686390 15 pasture/hay 15 1 
53 bloo_ne_t2 519449 4685991 11 mixed forest 11 1 
54 hoba_se_t1 528884 4683697 11 mixed forest 11 1 
55 hoba_ne_t2 530646 4686439 11 mixed forest 11 1 
56 delh_nw_t2 502996 4687942 9 deciduous forest 9 1 
57 delh_ne_t0 505889 4689196 15 pasture/hay 15 1 
58 delh_ne_t1 509345 4688786 11 mixed forest 11 1 
59 delh_ne_t1 510292 4687998 15 pasture/hay 15 1 
60 bloo_ne_t2 519467 4687055 15 pasture/hay 15 1 
61 hoba_nw_t3 522640 4687564 11 mixed forest 12   
62 delh_nw_t0 502107 4689928 11 mixed forest 11 1 
63 wdav_se_t3 506046 4691568 15 pasture/hay 15 1 
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Test Point DOQQ tile Test Point Test Point LU ID# Land Use Class Actual LU Same as 
From 

92samp2   X coord Y coord 
1992 

Landsat 1992 Landsat 1994 DOQQ
92 

Landsat
64 dave_sw_t2 515121 4691970 11 mixed forest 11 1 
65 bloo_ne_t0 517243 4691020 11 mixed forest 11 1 
66 bloo_ne_t1 518889 4691390 15 pasture/hay 15 1 
67 hoba_nw_t1 523250 4690738 15 pasture/hay 15 1 
68 hoba_ne_t0 526335 4689761 9 deciduous forest 9 1 
69 hoba_ne_t0 527462 4690753 3 low intensity residential 3 1 
70 hoba_ne_t1 529983 4691341 11 mixed forest 11 1 
71 wdav_sw_t2 503384 4694126 9 deciduous forest 9 1 
72 wdav_se_t3 506173 4693173 9 deciduous forest 9 1 
73 wdav_se_t1 508406 4695291 9 deciduous forest 9 1 
74 dave_se_t2 519095 4692754 11 mixed forest 11 1 
75 harp_sw_t3 521874 4692864 15 pasture/hay 15 1 
76 harp_sw_t2 525174 4694411 15 pasture/hay 15 1 
77 wdav_sw_t0 502016 4695604 11 mixed forest 11 1 
78 wdav_sw_t1 504933 4696532 11 mixed forest 11 1 
79 dave_sw_t0 511578 4695389 15 pasture/hay 15 1 
80 dave_sw_t1 514031 4695949 15 pasture/hay 15 1 
81 dave_se_t0 517372 4696613 15 pasture/hay 15 1 
82 harp_sw_t0 520731 4695437 9 deciduous forest 9 1 
83 harp_sw_t0 522610 4695627 11 mixed forest 11 1 
84 harp_se_t1 530601 4697696 11 mixed forest 11 1 
85 wdav_nw_t3 500767 4699884 11 mixed forest 11 1 
86 wdav_nw_t2 503767 4698589 9 deciduous forest 9 1 
87 wdav_se_t1 508211 4698283 15 pasture/hay 15 1 
88 dave_nw_t2 514940 4698638 11 mixed forest 15   
89 dave_se_t0 516730 4698319 9 deciduous forest 9 1 
90 dave_ne_t2 518509 4699401 9 deciduous forest 9 1 
91 harp_nw_t2 524720 4698590 15 pasture/hay 15 1 
92 harp_ne_t3 528268 4700747 9 deciduous forest 15   
93 wdav_ne_t0 505602 4702669 9 deciduous forest 9 1 
94 wdav_ne_t0 506478 4703792 11 mixed forest 11 1 
95 dave_nw_t1 513705 4703885 9 deciduous forest 9 1 
96 dave_ne_t0 516996 4703602 9 deciduous forest 9 1 
97 harp_nw_t3 520834 4701457 15 pasture/hay 15 1 
98 harp_nw_t2 524883 4701503 10 evergreen forest 10 1 
99 harp_ne_t1 530119 4702121 15 pasture/hay 15 1 

100 dave_ne_t1 519611 4704466 15 pasture/hay 15 1 
      Total Correct = 90/100 

 

Also see: http://landcover.usgs.gov/accuracy/table3.asp 
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Connecticut Statewide Temporal Land Cover
and Land Cover Change Project

(for the years 1985, 1990, 1995, 2002)
A General Overview

James Hurd, Center for Land use Education And Research, University of Connecticut

Introduction
This latest attempt at Connecticut statewide land cover mapping was undertaken by the
Center for Land use Education And Research (CLEAR) in the College of Agriculture and
Natural Resources at the University of Connecticut to help gain a better understanding of
the extent of land cover changes occurring in the Connecticut landscape. The premise
was to develop a temporal series of basic land cover information for four years (1985,
1990, 1995, 2002) that would allow us, among other potential uses, to apply landscape
characterization models developed under the NAUTILUS program; a NASA Regional Earth
Science Applications Center (RESAC). These models consist of forest fragmentation, state
of forest fragmentation, urban (development) growth, and impervious surface estimation.
Each of these models utilizes land cover information, and land cover that is consistent
between each date is necessary to produce reliable results over time. To achieve this, a
base land cover image (1985) was generated with subsequent land cover (1990, 1995,
2002) derived from it using cross-correlation analysis, a change detection method developed
by Earthsat, Inc. The analysis area consists of the entire State of Connecticut including local
watersheds that intersect the state boundary, and a portion of south central Massachusetts.
Nine towns from south central Massachusetts and 26 towns in northeast Connecticut
comprise the Quinebaug and Shetucket Rivers Valley National Heritage Corridor.

Base Land Cover (1985)
The primary source of image data came from an April 26, 1985 Landsat Thematic Mapper
(TM) scene (path 13/row 31) covering most of the analysis area. The Landsat Thematic
Mapper sensor collects data in seven regions of the electromagnetic spectrum (blue,
green, red, near-infrared, 2 middle-infrared, and thermal) at 30-meter spatial resolution
(60 –meters for the thermal band) and is well suited for land cover classification at a
regional level. The extreme southeastern portion of the State of Connecticut was covered by
an August 9, 1985 Landsat TM scene (path 12/row 31). Cloud and cloud shadow regions
covering some of the northwest portion of the state were extracted and substituted with a
May 4, 1988 Landsat TM scene. Most of this area consisted of forested land cover and
was not impacted by potential change in land cover between these two time periods. To
derive land cover information, several classification techniques were used. These include
sub-pixel classification, ISODATA unsupervised classification, supervised classification
using the maximum likelihood classifier, and knowledge-based classification.
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Road Network
Classification began with the April 26, 1985 image that was clipped to the analysis area.
Classification of the road network was the first focus. Identification of major and local roads
is critical to the successful application of the forest fragmentation and urban growth models
and also proves useful for impervious surface estimation. In order to capture roads, vector
road coverages were used to extract image data from the TM scene. All improved roads
(paved) were selected from the vector road coverage and rasterized to the pixel size of the
source imagery. This layer was then buffered 5 pixels to either side of the road to
account for areas of mis-alignment between the road layer and Landsat image data. All
image pixels contained within the 5 pixel buffer area were extracted for analysis (Figure
1a). The intent was to create an image data layer on which the classifications of roads
could be focused by minimizing non-road pixels. ERDAS Imagine SubPixel ClassifierTM

(SPC) engineered by Applied Analysis Inc. (AAI) was used to classify road pixels. The SPC
is a supervised classifier that enables the detection of materials of interest (MOIs) as whole
or fractional pixel composition, with a minimum detectable threshold of 20 percent and in
increments of 10 percent (i.e., 20-30%, 30-40%, …, 90-100%). Because of tonal variations
in the built landscape, MOIs representing different brightness classes of road and paved
surfaces (i.e. dark, medium, and bright surfaces) were selected to be mapped Any pixel
identified by the SPC, regardless of its percent composition, was considered a developed pixel.

Final results of the SPC did not fully extract the road network. To enhance further the
results of the SPC, knowledge-based (KB) classification was employed. Those pixels not
identified as developed through the SPC technique were extracted for further evaluation.
Bands 4 and 5 showed the most contrast between developed pixels and other pixels. In
the ERDAS Imagine Knowledge Engineer, a rule was created that used the value ranges
(129 and 143 for band 4; 128 and 193 for band 5) to identify developed pixels that met
the criteria for both bands. In addition, a pixel also had to be contained within the actual
rasterized road layer. The result of this procedure was the identification of additional developed
pixels not identified using the sub-pixel classifier.

Figure 1b provides the results of the Sub-pixel Classifier and Knowledge-based classification
applied to the road buffered image. The SPC and knowledge-based classification unfortunately
did not extract the full extent of the road network. To correct for this problem, the rasterized
road layer was embedded with the final classification. Onscreen digitizing was conducted
to remove areas of mis-alignment. While this may appear to be a step backward, enough
pixels were identified as developed to prove invaluable in determining the true road alignment
that is critical to the success of the forest fragmentation and urban growth models. The
same techniques were used on the August 9, 1985 image covering the southeast portion
of the analysis area.
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a b c 

Figure 1. Example of the road network classification. (a) Extracted image pixels 
surrounding rasterized road network. (b) Classified road network pixels using the SBC and 
KB classifiers (yellow). (c) Embedded rasterized road network on final land cover. 

 
Complete Area Classification 
The remaining image pixels were then classified. To begin, those pixels identified as 
developed in the previous step were eliminated from the TM image. An area of 
approximately 180 square miles along the central coast of Connecticut was then subset 
from the overall analysis area for use in deriving classification signature statistics. This area 
was selected because it contained a significant amount of those categories identified in the 
classification scheme (Table 1). ISODATA classification was performed generating 100 
signature clusters. These clusters were then identified and labeled into the appropriate land 
cover category. 

 

Table 1. Land cover classification scheme. 

 

1. Developed 5. Coniferous Forest 9. Tidal Wetlands 

2. Turf & Grass 6. Water 10. Barren Land 

3. Agriculture & Other Grasses 7. Non-forested Wetlands 11. Utility Right-of-
Ways 

4. Deciduous Forest 8. Forest Wetlands  
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Maximum likelihood classification was applied to the entire statewide area using selected 
signatures derived through the ISODATA process. Classification was done one class at a 
time specifying a distance image as the output. The distance file produces an image whose 
pixel values represent the spectral distance from the class signature. The lower the value, 
the more similar a pixel is to a specific class signature. This procedure was repeated for 
each class. Visual examination of the distance image with the TM image resulted in the 
identification of thresholds that were used with the Knowledge Engineer to derive a land 
cover image. Additionally, tidal wetlands were identified based on a previous land cover 
project for the State of Connecticut based on spring and summer 1995 Landsat TM 
imagery. This 1995 land cover image was also used to identify further non-vegetated 
agricultural areas that were misclassified as developed due to the bright spectral 
reflectance. Figure 2 provides an overview of this phase of the classification. 

 

  

a b c 

Figure 2. Example of knowledge-based classification using distance images. (a) April 26, 
1985 Landsat TM image. (b) Distance image for the deciduous forest class (green = more 
likely deciduous). (c) Resulting KB classification. 

 

Pixels remaining as unclassified were again extracted from the TM image. ISODATA 
classification was performed on these remaining pixels. The clusters were identified and 
labeled into the appropriate category. The resulting classification layers were then merged to 
create a single classified image with all pixels being identified as belonging to a single 
category. Several steps were taken to “clean-up” the classification. First, a digital elevation 
model was used to eliminate areas misclassified as wetlands due predominately to steep 
northwest facing slopes. Using the Knowledge Engineer, any pixel identified as non-forested 
or forested wetlands that fell on a slope of 12 degrees or more was reassigned to deciduous 
forest.  Several majority filters were used to eliminate specific isolated pixels resulting in a 
more uniform classification. Lastly, extensive heads-up digitizing was used to remove any 
remaining apparent errors and to also include utility right-of-ways which can be considered 
significant fragmenting features to the forest landscape. Utility right-of-ways were digitized 
out of the deciduous and coniferous forest classes only. The overall intent in developing a 
land cover image using these various techniques was to continually eliminate those pixels 
that were easily classified and identify those pixels that were more problematic. Remaining 
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errors would potentially be cleaned during the on-screen digitizing phase of the classification.



Subsequent Land Cover
Cross-correlation Analysis (CCA) was chosen as the method for determining subsequent
land cover because it overcomes many of the limitations of conventional change detection
methods and is able to produce a consistent set of land cover. Cross-correlation works by
using the land cover categories identified in the base land cover image to derive an
“expected” class average spectral response. This information is used to derive a Z-statistic
for each pixel falling within a given land cover type. The Z-statistic describes how close a
pixel’s response is to the “expected” spectral response of its corresponding class value in
the land cover image. Pixels that have undergone change between the date of the land
cover image and the multispectral image will produce high Z-statistic values while pixels
that have not changed will produce low Z-statistic values. The benefit of this technique is
that it eliminates the problems associated with radiometric and phenological differences
that are so readily experienced when performing change detection. 

In the case of this work, CCA was applied to five groups of land cover categories. These
groups include water; deciduous, coniferous and forested wetlands; turf & grass and
agriculture; barren; and non-forested and tidal wetlands. Using the 1985 land cover, pixels
belonging to each group were extracted from an August 30, 1990 TM image (i.e. for the
deciduous, coniferous and forested wetlands group, pixels classified as these in 1985 were
extracted from the August 30, 1990 TM image). The CCA procedure was applied to the
extracted pixels and the results were visually examined with the recent image data to
determine the threshold between probable change pixels and non-changed pixels. Those
pixels identified as changed were extracted from the August 30, 1990 image. ISODATA
unsupervised classification was performed to identify the category that each pixel now
belonged. These steps were repeated for each class group. Figure 5 provides examples of
CCA on the forest grouping between 1985 and 1990. Once completed, each group of
classifications was combined into a single image and edited to remove apparent errors.
These pixels were then fused with the previous land cover to produce an updated land
cover image. This updated land cover was then used on an August 28, 1995 TM image
and that updated land cover used on a September 8, 2002 TM image. Figure 3 provides
examples of preliminary land cover for the town of Tolland, Connecticut.
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1985 land cover 1990 land cover 

  

1995 land cover 2002 land cover 

Figure 3.. Preliminary results of land cover for the town of Tolland, Connecticut (developed is red, turf & grass 
is yellow, agriculture & other grasses is tan, deciduous forest is green, coniferous forest is dark green, water is 
blue, non-forested wetland is cyan, forested wetland is mint green, barren land is gray, and utility right-of-ways 
are orange). 
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Conclusion
The result of this work will provide CLEAR with a consistent set of land cover images on
which to apply landscape characterization models. Together, the land cover information
and results of the models will provide a suite of information that will be made available to
community and state decision makers, and the general public, and provide a means for
them to evaluate and quantify the results of past land use decisions, and to begin to grasp
what type of future landscape current land use policies may produce.

Category Descriptions

DDeevveellooppeedd – includes high-density built-up areas which are typically associated with
commercial, industrial and residential activities and transportation routes. These areas will
contain a high percentage of land cover types such as concrete and asphalt surfaces, roofs,
roads, and other impervious surfaces. Also includes some areas adjacent to highways and major
roads. Most transportation routes identified by rasterizing statewide vector roads coverage.

TTuurrff  &&  GGrraassss  - a compound category of undifferentiated grasses associated mostly with
developed areas. These areas will contain mostly cultivated lawns and cultivated lawns with
a sparse tree over story such as is found in a typical residential neighborhood, turf farms,
golf courses, and other maintained grassy areas. Also likely to include some agricultural
fields due to similar spectral reflectance properties.

AAggrriiccuullttuurree  &&  OOtthheerr  GGrraasssseess – includes mostly agricultural fields used for both crop production
and pasture. Also includes grassy areas associated with development due to similar spectral
reflectance properties and forest clear-cut areas.

DDeecciidduuoouuss - includes typical southern New England mixed hardwood forests. Includes not
only large expanses of forested land but inclusion of small patches of trees detectable by
the Landsat sensor. Also likely to include scrub areas characterized by patches of small
woody vegetation and undifferentiated grasses. Also some agricultural fields due to similar
spectral characteristics.

CCoonniiffeerroouuss – includes typical southern New England mixed softwood forests. Includes not
only large expanses of forested land but inclusion of small patches of trees detectable by
the Landsat sensor.

WWaatteerr - open water bodies and watercourses with relatively deep water and large enough to
be resolved by the Landsat sensor.

NNoonn--ffoorreesstteedd  WWeettllaanndd – includes areas depicted as being predominately wet throughout
most of the year with a detectable vegetative cover. Also likely to include small river courses
due to the similar spectral characteristics caused by the mix of water and vegetation land
cover in a single Landsat pixel. 
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FFoorreesstteedd  WWeettllaanndd - includes areas depicted as wetland, but with a more detectable vegetative
cover. Also likely to include small river courses due to the similar spectral characteristics
caused by the mix of water and vegetation land cover in a single Landsat pixel.

TTiiddaall  WWeettllaanndd – includes emergent wetlands depicted as being predominately wet throughout
most of the year with a detectable vegetative and located adjacent to the coastal region.

BBaarrrreenn - includes mostly non-agricultural areas relatively free from vegetation, such as
sand, sand and gravel operations, bare exposed rock, mines, quarries, etc. Also likely to
include some urban areas where the composition of construction materials spectrally
resembles more natural materials, and bare soil agricultural fields.

UUttiilliittyy - includes identifiable utility right-of-ways. This category was manually digitized on-screen
and was taken from the deciduous and coniferous categories only.

For information regarding this work, please contact:
James Hurd
Center for Land use Education And Research (CLEAR)
The University of Connecticut
jhurd@canr.uconn.edu
(860) 486-4610
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Appendix C:  Data Sources
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Appendix D: Thames Watershed Town Data
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1990 1995 2000 1990 1995 2000 1985 1990 1995 2000

Andover 80,000$   115,500$ 136,500$ 4.1 4.4 4.5 1.8 1.3 1.4 0.9

Ashford 101,500$ 68,750$   111,000$ 2.1 1.7 2.7 0.6 0.6 0.5 0.6

Bolton 178,500$ 110,000$ 134,750$ 3.5 5.8 7.3 3.3 0.3 1.4 1.4

Bozrah 107,000$ 93,500$   114,450$ 1.2 1.7 1.9 0.7 0.5 0.6 0.5

Brimfield 72,500$   60,000$   77,500$   2.3 2.2 2.6  0.6 0.5 0.8

Brookfield 89,900$   72,000$   98,900$   2.5 3.3 6.0 0.0 0.2 0.5

Brooklyn 100,000$ 90,000$   112,000$ 5.0 3.9 5.3 1.4 1.0 0.8 0.9

Canterbury 115,000$ 94,000$   115,000$ 1.6 1.9 2.5 0.3 0.6 0.5

Chaplin 124,900$ 75,000$   99,750$   1.2 2.5 2.6 0.6 0.6 0.0 0.7

Charlton 105,000$ 105,000$ 153,500$ 3.8 4.5 6.7  0.0 1.1 1.9

Colchester 138,825$ 116,500$ 135,950$ 5.1 7.3 6.8 3.5 0.0 2.3 1.9

Columbia 144,000$ 115,000$ 137,750$ 3.0 3.7 6.1 5.9 0.7 1.2 1.1

Coventry 122,700$ 85,000$   120,000$ 5.5 6.3 8.0 1.8 1.3 2.1

Dudley 100,000$ 68,000$   125,000$ 6.2 6.1 10.9 2.0 1.6 2.0 3.6

East Brookfield 108,000$ 80,500$   115,500$ 4.8 4.2 3.8 0.8 0.3 0.1 0.3

East_Haddam 106,000$ 105,000$ 137,510$ 2.8 3.1 5.2 1.1 0.8 1.3

Eastford 75,500$   57,000$   90,000$   0.7 1.2 1.4 0.5 0.3 0.2

Ellington 140,000$ 114,000$ 149,900$ 5.1 5.6 8.9 9.0 1.2 1.4 3.7

Franklin 147,750$ 97,000$   129,000$ 1.4 1.6 1.9 0.8 0.3 0.2 0.5

Griswold 105,000$ 84,000$   111,250$ 4.7 5.1 6.2 1.5 1.4 1.1

Hampton 99,500$   49,000$   111,500$ 1.0 1.6 1.8 0.3 0.4 0.6 0.7

Hebron 152,000$ 112,000$ 148,900$ 3.3 5.4 5.1 3.2 0.5 1.4 1.1

Holland 95,000$   77,500$   79,000$   5.0 3.4 7.3  0.6 0.4 0.7

Killingly 105,000$ 80,000$   100,000$ 5.1 4.9 6.5 2.2 1.1 0.7 0.8

Lebanon 110,000$ 100,000$ 110,000$ 2.4 2.2 2.6 1.3 0.7 0.4 0.8

Ledyard 131,250$ 112,250$ 138,000$ 5.8 5.3 6.9 2.9 0.8 0.8 1.0

Leicester 89,450$   89,950$   112,950$ 5.0 5.6 7.5 1.7 1.8 1.4 1.8

Lisbon 125,000$ 91,000$   119,750$ 2.8 4.6 4.3 2.1 0.8 1.3 1.1

Mansfield 128,294$ 108,000$ 126,001$ 3.2 4.4 5.7 1.1 0.6 1.1 1.0

Marlborough 157,000$ 135,750$ 165,000$ 2.9 4.5 6.3 2.0 0.3 0.9 1.5

Monson 96,000$   92,250$   107,000$ 6.1 6.2 5.8 1.0 0.0 0.8 0.7

Montville 120,000$ 100,000$ 119,500$ 4.6 5.2 8.2 1.8 0.7 1.3 1.8

North_Stoningto 128,000$ 122,000$ 134,500$ 1.0 2.1 2.1 0.4 0.4 0.4

Norwich 110,000$ 75,000$   97,000$   14.4 15.1 18.5 2.2 6.5 0.7 1.0

Oxford 100,000$ 88,750$   117,750$ 8.5 6.9 11.5 2.2  2.3 2.0

Plainfield 100,000$ 82,350$   97,000$   4.6 4.8 7.8 1.6 1.2 1.1 2.0

Pomfret 105,250$ 103,870$ 116,500$ 1.7 1.9 1.5 0.9 0.7 0.5 0.6

Preston 105,000$ 90,000$   125,000$ 1.7 2.5 2.9 1.0 0.4 0.7 0.6

Putnam 100,000$ 79,950$   91,750$   7.4 7.1 7.8 1.7 0.5 0.8 0.6

Salem 56,392$   143,000$ 137,450$ 3.3 3.1 2.6 1.7 0.7 0.9 0.6

Scotland 57,500$   38,500$   110,000$ 1.9 1.7 2.3 0.5 0.4 0.5 0.4

Somers 178,000$ 139,500$ 140,000$ 4.3 4.2 6.9 1.6 0.7 0.6 2.0

Southbridge 88,000$   76,900$   101,000$ 7.5 9.0 12.0 4.3 1.0 0.9 1.1

Spencer 105,000$ 83,000$   114,950$ 4.6 4.5 6.7  0.7 2.9 1.0

Sprague 115,000$ 71,000$   88,250$   1.8 2.5 2.6 0.7 0.3 0.2 0.2

Stafford 115,000$ 85,000$   98,000$   3.6 3.2 4.9 2.2 1.1 0.5 0.7

Sterling 87,450$   63,700$   112,000$ 2.9 2.6 3.0 0.9 1.7 0.8 0.6

Sturbridge 116,640$ 105,000$ 139,900$ 3.4 4.0 6.5 3.6 0.7 0.7 1.8

Thompson 86,200$   75,000$   99,000$   3.1 2.9 3.7 1.1 0.8 0.5 0.5

Tolland 152,025$ 122,200$ 160,000$ 4.3 6.8 9.1 2.7 0.8 2.1 3.8

Union 128,000$ 35,000$   89,900$   0.5 0.4 0.8 0.1 0.1 0.3 0.2

Vernon 129,900$ 106,250$ 120,750$ 20.5 19.4 30.7 18.6 1.7 1.0 3.4

Voluntown 106,500$ 76,000$   114,950$ 1.1 1.4 1.5 0.5 0.5 0.5 0.4

Wales 60,000$   65,302$   77,000$   2.9 1.9 2.8  0.4 0.4

Warren 75,000$   58,621$   88,750$   3.2 3.1 3.4 1.3 1.8 0.5 0.0

Webster 100,000$ 84,500$   110,000$ 15.8 14.6 22.4 5.9 3.4 1.8 2.9

Willington 136,000$ 111,750$ 124,250$ 2.2 2.4 3.1 1.8 0.6 0.4 0.5

Windham 114,900$ 77,000$   90,000$   6.8 7.5 11.1 1.2 1.1 0.4 0.2

Woodstock 89,900$   86,000$   108,000$ 3.2 2.7 3.3 1.2 0.8 0.4 0.8

median home sale price # home sales per square mile residential building permits per square mile

THAMES STUDY AREA HOUSING DATA

dynamic models of land use change in northeastern usa
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1985 1990 1995 2000 1985 1990 1995 2000

Andover 1,410       1,577       1,511       1,650       3.6 4.4 4.9 1.6

Ashford 1,824       2,229       2,126       2,178       2.7 3.9 5.6 1.7

Bolton 2,458       2,857       2,650       2,747       3.5 3.2 4.5 1.5

Bozrah 1,350       1,419       1,451       1,464       4.5 6.6 5.2 2

Brimfield 1,115       1,462       1,615       1,541       4.2 5.7 6 3

Brookfield 1,249       1,508       1,416       1,412       4.3 6.6 4.7 2.7

Brooklyn 3,360       3,640       3,756       3,972       4.6 6.2 5.6 2

Canterbury 1,959       2,555       2,635       2,784       6.4 6.8 5.8 2.1

Chaplin 962          1,178       1,145       1,201       3.1 4.4 5.2 1.3

Charlton 3,314       5,208       5,310       5,462       4.8 5.8 5.8 2.7

Colchester 4,475       6,367       6,438       6,733       4.6 5.5 5.7 1.9

Columbia 2,095       2,705       2,581       2,691       4.2 3.6 4.6 1.4

Coventry 5,281       6,114       5,957       6,202       4.3 4.5 5.4 1.8

Dudley 4,645       5,201       5,068       4,898       3.1 6.2 4.8 2.9

East Brookfield 953          1,056       1,014       1,008       3.5 6.4 5.6 3.5

East Haddam 3,117       3,971       3,961       4,165       4 4.1 6.1 2.1

Eastford 583          760          821          898          3.8 4.2 5.1 1.7

Ellington 5,863       7,091       6,641       6,961       3.6 3.6 4.7 2.1

Franklin 1,077       1,080       1,101       1,102       5.2 4.6 4.5 1.5

Griswold 5,143       5,496       5,630       5,827       5.7 6.8 5.7 2.5

Hampton 781          1,011       1,033       1,133       4.5 4.1 4.5 2.1

Hebron 3,449       4,149       4,093       4,421       3.5 4 5 1.6

Holland 741          1,140       1,032       1,005       4 4.6 5.4 4.1

Killingly 8,167       8,889       8,891       8,644       8.5 9.6 7.9 4.2

Lebanon 2,646       3,552       3,389       3,364       3.5 4.9 6 2.1

Ledyard 7,070       7,884       7,960       8,092       3.4 3.8 3.9 1.6

Leicester 4,854       5,652       5,571       5,622       3.7 6 5.5 2.8

Lisbon 1,919       2,130       2,207       2,255       4 6.1 5.8 2.2

Mansfield 9,097       10,952     8,932       9,238       1.8 3.1 3.3 1.3

Marlborough 2,801       3,199       2,991       3,096       2.5 3.5 4.5 1.5

Monson 3,392       3,870       3,777       3,794       4.1 6 6.6 3

Montville 9,151       9,461       9,775       9,798       4.9 6.3 5.5 2.1

North Stonington 2,366       2,769       2,819       2,943       4.2 5.2 3.9 1.9

Norwich 20,401     19,356     18,975     18,876     6 7 6.2 2.9

Oxford 5,888       6,715       6,644       6,758       5 7 5.7 3

Plainfield 6,643       7,747       7,855       8,676       8.4 8.5 7.3 2.8

Pomfret 1,637       1,849       1,976       2,182       4.3 5.5 5.4 2

Preston 2,335       2,677       2,756       2,578       1.5 4.5 4.6 2

Putnam 4,522       4,658       4,557       4,822       7.7 9.3 7.4 3

Salem 1,508       1,936       2,066       2,055       4.3 6 6 1.8

Scotland 563          722          809          888          2.3 5.4 4.4 1.4

Somers 4,178       4,274       3,996       4,119       3.7 4 4.9 1.8

Southbridge 7,691       8,755       8,332       8,098       3.8 7.4 6.2 3.3

Spencer 5,314       6,093       6,069       6,197       3.4 6.2 5.4 2.6

Sprague 1,742       1,683       1,687       1,675       6.3 7.7 6.9 3.3

Stafford 5,276       6,100       5,761       5,896       5.9 5.4 6.4 2

Sterling 906          1,328       1,509       1,635       8.2 8.5 7.9 2.6

Sturbridge 2,945       4,242       4,151       4,218       5.6 5.4 4.3 2.3

Thompson 4,648       4,729       4,619       4,612       8.9 8.3 5.7 2.9

Tolland 5,929       6,778       6,657       7,201       3.4 3.2 4.4 1.3

Union 311          369          381          407          1 4.6 3.4 2.2

Vernon 16,404     18,440     16,604     16,592     4.4 4.8 5.5 1.8

Voluntown 892          1,265       1,308       1,380       8.9 8.7 8.4 3.2

Wales 523          852          894          833          8 6.9 5.3 3.8

Warren 1,556       2,281       2,462       2,368       3.4 6 5.1 3.3

Webster 7,068       8,401       8,037       8,110       4.9 7.8 6.1 3.4

Willington 2,815       3,823       3,524       3,484       3.2 3.8 4.6 1.5

Windham 11,139     11,322     10,341     10,115     6.6 5.8 7.6 3.1

Woodstock 2,962       3,400       3,630       4,001       4.4 5.2 4.3 1.9

Total 234,463   267,927   260,897   266,077   

Average 5% 6% 5% 2%

Labor Force Unemployment Rate (%)

THAMES STUDY AREA LABOR FORCE DATA

yale university’s global institute of sustainable forestry
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Town

Population 

1990

 Population 

2000 

Population 

change 1990 

- 2000

% Population 

Change

Andover 2,612           3,066          455 17.4%

Ashford 3,816           4,073          258 6.8%

Bolton 4,685           5,031          346 7.4%

Bozrah 2,293           2,280          -13 -0.6%

Brimfield 3,027           3,343          316 10.4%

Brookfield 3,149           3,062          -87 -2.8%

Brooklyn 6,706           7,124          418 6.2%

Canterbury 4,518           4,724          206 4.6%

Chaplin 2,095           2,289          194 9.2%

Charlton 9,819           11,276        1457 14.8%

Colchester 11,145         14,537        3392 30.4%

Columbia 4,651           4,976          324 7.0%

Coventry 10,243         11,517        1273 12.4%

Dudley 9,878           9,969          91 0.9%

East Brookfield 2,166           2,096          -70 -3.2%

East Haddam 6,945           8,289          1344 19.4%

Eastford 1,352           1,630          278 20.6%

Ellington 11,347         12,848        1501 13.2%

Franklin 1,809           1,812          3 0.1%

Griswold 10,995         10,787        -208 -1.9%

Hampton 1,602           1,764          163 10.2%

Hebron 7,131           8,651          1520 21.3%

Holland 2,302           2,409          107 4.7%

Killingly 16,409         16,646        237 1.4%

Lebanon 6,132           6,923          791 12.9%

Ledyard 15,481         14,649        -833 -5.4%

Leicester 10,110         9,574          -536 -5.3%

Lisbon 3,905           4,096          191 4.9%

Mansfield 22,026         21,349        -677 -3.1%

Marlborough 5,553           5,733          180 3.2%

Monson 7,894           8,381          487 6.2%

Montville 17,567         18,544        977 5.6%

North Stonington 4,996           5,007          11 0.2%

Norwich 38,642         35,951        -2691 -7.0%

Oxford 13,015         13,378        363 2.8%

Plainfield 14,607         14,659        52 0.4%

Pomfret 3,132           3,782          649 20.7%

Preston 5,299           4,795          -504 -9.5%

Putnam 9,049           8,987          -61 -0.7%

Salem 3,380           3,817          437 12.9%

Scotland 1,263           1,574          311 24.6%

Somers 9,262           10,707        1445 15.6%

Southbridge 18,294         17,205        -1089 -6.0%

Spencer 9,815           9,272          -542 -5.5%

Sprague 3,161           2,985          -176 -5.6%

Stafford 11,229         11,312        83 0.7%

Sterling 2,394           3,079          685 28.6%

Sturbridge 8,074           7,842          -232 -2.9%

Thompson 9,213           9,076          -137 -1.5%

Tolland 11,161         13,148        1987 17.8%

Union 655              716             61 9.3%

Vernon 30,584         28,269        -2316 -7.6%

Voluntown 2,128           2,533          405 19.0%

Wales 1,564           1,733          169 10.8%

Warren 4,411           4,816          405 9.2%

Webster 19,025         16,253        -2772 -14.6%

Willington 6,075           6,004          -71 -1.2%

Windham 22,725         22,825        100 0.4%

Woodstock 6,085           7,171          1086 17.8%

Total 498,598       510,342     11744 2.4%

THAMES STUDY AREA POPULATION DATA

dynamic models of land use change in northeastern usa




